The space of continuous functions is a normed vector space
Given topological spaces $X$ and $Y$, define \[ C(X,Y) = \{f : X \to Y | \; f {\rm \; is \; continuous} \} .\]
Let $X$ be a compact topological space and $V$ a normed vector space.
Prove that $C(X,V)$ becomes a normed vector space if we define addition and scalar multiplication in $C(X,V)$ by \[ (f + g)(x) = f(x) + g(x) \] \[ (c f)(x) = c f(x) \] for $f,g \in C(X,V)$, $c \in C$ and $x \in X$, and define the define sup norm of $f \in C(X,V)$ by \[ \|f\|_{\sup} = \sup_{x \in X} \|f(x)\| .\]
Answer
First note that since $X$ is compact, every $f \in C(X,V)$ is bounded, i.e. $\|f\|_{\sup}<\infty$. (i) It is easy to see that for a continuous function $f:X\rightarrow Y$ \[ \|f\|_{\sup} =0 \Leftrightarrow f \equiv 0. \] (ii) For $\alpha \in \R$ \[ \| \alpha f\|_{\sup}= \sup_{x\in X} \|\alpha f\|= |\alpha| \sup_{x \in X} \|f\|=|\alpha| \|f\|_{\sup}. \] (iii) Let $f,g \in C(X,V)$. Then \[ \|f+g\|_{\sup} = \sup_{x \in X} \|f(x)+g(x)\|\leq \sup_{x\in X}\|f(x)\|+\sup_{x\in X}\|g(x)\|=\|f\|_{\sup}+\|g\|_{\sup}. \] Thus $C(X,Y)$ is a normed vector space. $\Box$
- answered
- 1193 views
- $20.00
Related Questions
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- separability and completeness
- [Linear Algebra] Diagonalizable operator and Spectrum
- Characterizing the Tangent and Normal Bundles - Submanifolds in Banach Spaces and Their Classifications
- real analysis
- Is it true almost all Lebesgue measurable functions are non-integrable?
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- Math and graph representing a competitive struggle between competitors with a fixed number of supporters.