The space of continuous functions is a normed vector space
Given topological spaces $X$ and $Y$, define \[ C(X,Y) = \{f : X \to Y | \; f {\rm \; is \; continuous} \} .\]
Let $X$ be a compact topological space and $V$ a normed vector space.
Prove that $C(X,V)$ becomes a normed vector space if we define addition and scalar multiplication in $C(X,V)$ by \[ (f + g)(x) = f(x) + g(x) \] \[ (c f)(x) = c f(x) \] for $f,g \in C(X,V)$, $c \in C$ and $x \in X$, and define the define sup norm of $f \in C(X,V)$ by \[ \|f\|_{\sup} = \sup_{x \in X} \|f(x)\| .\]
Answer
First note that since $X$ is compact, every $f \in C(X,V)$ is bounded, i.e. $\|f\|_{\sup}<\infty$. (i) It is easy to see that for a continuous function $f:X\rightarrow Y$ \[ \|f\|_{\sup} =0 \Leftrightarrow f \equiv 0. \] (ii) For $\alpha \in \R$ \[ \| \alpha f\|_{\sup}= \sup_{x\in X} \|\alpha f\|= |\alpha| \sup_{x \in X} \|f\|=|\alpha| \|f\|_{\sup}. \] (iii) Let $f,g \in C(X,V)$. Then \[ \|f+g\|_{\sup} = \sup_{x \in X} \|f(x)+g(x)\|\leq \sup_{x\in X}\|f(x)\|+\sup_{x\in X}\|g(x)\|=\|f\|_{\sup}+\|g\|_{\sup}. \] Thus $C(X,Y)$ is a normed vector space. $\Box$

- answered
- 547 views
- $20.00
Related Questions
- Prove that every compact Hausdorff space is normal
- Uniform convergence of functions
- Prove that $\frac{d \lambda}{d \mu} = \frac{d \lambda}{d \nu} \frac{d \nu}{d \mu}$ for $\sigma$-finite measures $\mu,\nu, \lambda$.
- How do I compare categorical data with multiple uneven populations?
- Is it true almost all Lebesgue measurable functions are non-integrable?
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
- real analysis
- Use first set of data to derive a second set