Subsets and Sigma Algebras: Proving the Equality of Generated Sigma Algebras
Let $X$ a set and $Y$ a subset of $X$. Let $B$ a sigma algebra over $X$ and $F=\left\{ E\cap Y:\,E\in B\right\}$
a sigma algebra over $Y$.
If $B=\sigma(\mathcal{E}_{1})$ and $\mathcal{E}_{2}=\left\{ E\cap Y: \,E\in \mathcal{E}_{1}\right\}$, prove that $F=\sigma(\mathcal{E}_{2}).$
Prove that
I) $F\subset \sigma(\mathcal{E}_{2}) $
II) $\sigma(\mathcal{E}_{2}) \subset F.$
39
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1291 views
- $20.00
Related Questions
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- Generalization of the Banach fixed point theorem
- Measure Theory and the Hahn Decomposition Theorem
- Question on a pre-measure defined by Folland's real analysis book
- What is the asymptotic density of $A$ and $B$ which partition the reals into subsets of positive measure?
- Math and graph representing a competitive struggle between competitors with a fixed number of supporters.
- How do we define this choice function using mathematical notation?