Subsets and Sigma Algebras: Proving the Equality of Generated Sigma Algebras
Let $X$ a set and $Y$ a subset of $X$. Let $B$ a sigma algebra over $X$ and $F=\left\{ E\cap Y:\,E\in B\right\}$
a sigma algebra over $Y$.
If $B=\sigma(\mathcal{E}_{1})$ and $\mathcal{E}_{2}=\left\{ E\cap Y: \,E\in \mathcal{E}_{1}\right\}$, prove that $F=\sigma(\mathcal{E}_{2}).$
Prove that
I) $F\subset \sigma(\mathcal{E}_{2}) $
II) $\sigma(\mathcal{E}_{2}) \subset F.$
39
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1076 views
- $20.00
Related Questions
- Measure Theory and the Hahn Decomposition Theorem
- $\textbf{I would like a proof in detail of the following question.}$
- real analysis
- Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
- real analysis
- Measure Theory (A counterexample to interchanging limits and integration)
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- How do we take the mean of a mathematical function using statistics?