Find the cardinality of the set of all norms on R^n (hint: show that every norm || || : R n → R is continuous).
Answer
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
1 Attachment

-
Leave a comment if you need any clarifications.
-
Do you also need the proofs for your other question or just the answer? I would say your offered amount is a bit low.
-
Proofs, how much more do you think i should add?
-
Well, it indeed needs three proofs (one for each case ) and will take about an hour to write. I think the offer should be at least tripled.
-
Okay i'll do that
-
I suggest you to also set a later deadline, if possible. 4 hours is too early for this kind of high level questions.
-
Hey Phillip, i just realized, don't i need a lower bound for the Cardinality for the set of all norms
-
Cool. So you do not need the second part of the argument.
-
im confused. I still need a lower bound for the cardinality for the set of all norms
-
Suppose you have a norm || . || . Then for any real number a, a*|| . || is also a norm. So The cardinality of the set of norms is at least that of the continuum. I hope this makes it clear.
-
See also the attached file.
- answered
- 279 views
- $7.00
Related Questions
- Is it true almost all Lebesgue measurable functions are non-integrable?
- Pathwise connected
- Probability Question
- Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
- Finding a unique structure of the domain of a function that gives a unique intuitive average?
- Prove the uniqueness of a sequence using a norm inequality.
- real analysis
- Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.