Find the cardinality of the set of all norms on R^n (hint: show that every norm || || : R n → R is continuous).
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

-
Leave a comment if you need any clarifications.
-
Do you also need the proofs for your other question or just the answer? I would say your offered amount is a bit low.
-
Proofs, how much more do you think i should add?
-
Well, it indeed needs three proofs (one for each case ) and will take about an hour to write. I think the offer should be at least tripled.
-
Okay i'll do that
-
I suggest you to also set a later deadline, if possible. 4 hours is too early for this kind of high level questions.
-
Hey Phillip, i just realized, don't i need a lower bound for the Cardinality for the set of all norms
-
Cool. So you do not need the second part of the argument.
-
im confused. I still need a lower bound for the cardinality for the set of all norms
-
Suppose you have a norm || . || . Then for any real number a, a*|| . || is also a norm. So The cardinality of the set of norms is at least that of the continuum. I hope this makes it clear.
-
See also the attached file.
- answered
- 1641 views
- $7.00
Related Questions
- What is the asymptotic density of $A$ and $B$ which partition the reals into subsets of positive measure?
- Need Upper Bound of an Integral
- Prove that $p_B :\prod_{\alpha \in A} X_\alpha \to \prod_{\alpha \in B} X_\alpha$ is a continuous map
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- real analysis
- Math and graph representing a competitive struggle between competitors with a fixed number of supporters.
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- $\textbf{I would like a proof in detail of the following question.}$