Find the cardinality of the set of all norms on R^n (hint: show that every norm || || : R n → R is continuous).
Answer
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

-
Leave a comment if you need any clarifications.
-
Do you also need the proofs for your other question or just the answer? I would say your offered amount is a bit low.
-
Proofs, how much more do you think i should add?
-
Well, it indeed needs three proofs (one for each case ) and will take about an hour to write. I think the offer should be at least tripled.
-
Okay i'll do that
-
I suggest you to also set a later deadline, if possible. 4 hours is too early for this kind of high level questions.
-
Hey Phillip, i just realized, don't i need a lower bound for the Cardinality for the set of all norms
-
Cool. So you do not need the second part of the argument.
-
im confused. I still need a lower bound for the cardinality for the set of all norms
-
Suppose you have a norm || . || . Then for any real number a, a*|| . || is also a norm. So The cardinality of the set of norms is at least that of the continuum. I hope this makes it clear.
-
See also the attached file.
- answered
- 1695 views
- $7.00
Related Questions
- Math and graph representing a competitive struggle between competitors with a fixed number of supporters.
- real analysis
- Accumulation points question (Real Analysis)
- Prove that every compact Hausdorff space is normal
- Sigma-Algebra Generated by Unitary Subsets and Its Measurable Functions
- real analysis
- Prove that $S \subseteq X$ is nowhere dense iff $X-\overline{S}$ is dense.
- Limit Superior, Limit Inferior, and Convergence Properties of Bounded Sequences