[Real Analysis] Let $a>1$ and $K>0$. Show that there exists $n_0∈N$ such that $a^{n_0}>K$.
Let $a>1$ and $K>0$. Show that there exists $n_0∈N$ such that
$a^{n_0}>K$.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1026 views
- $10.00
Related Questions
- Prove that $A - B=A\cap B^c$
- Accumulation points question (Real Analysis)
- real analysis
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- Is it true almost all Lebesgue measurable functions are non-integrable?
- The space of continuous functions is a normed vector space
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- How do I compare categorical data with multiple uneven populations?