[Real Analysis] Let $a>1$ and $K>0$. Show that there exists $n_0∈N$ such that $a^{n_0}>K$.
Let $a>1$ and $K>0$. Show that there exists $n_0∈N$ such that
$a^{n_0}>K$.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Dynkin
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 640 views
- $10.00
Related Questions
- A lower bound on infinite sum of exponential functions (corrected version)
- Rank, Range, Critical Values, Preimage, and Integral of Differential Forms
- A function satifying $|f(x)-f(y)|\leq |x-y|^2$ must be constanct.
- Advanced Modeling Scenario
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- continuous function
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous