[Real Analysis] Let $a>1$ and $K>0$. Show that there exists $n_0∈N$ such that $a^{n_0}>K$.
Let $a>1$ and $K>0$. Show that there exists $n_0∈N$ such that
$a^{n_0}>K$.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 859 views
- $10.00
Related Questions
- Sigma-Algebra Generated by Unitary Subsets and Its Measurable Functions
- $\textbf{I would like a proof in detail of the following question.}$
- Generalization of the Banach fixed point theorem
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.
- real analysis
- Advanced Modeling Scenario
- Analyzing the Domain and Range of the Function $f(x) = \frac{1}{1 - \sin x}$