[Real Analysis] Let $a>1$ and $K>0$. Show that there exists $n_0∈N$ such that $a^{n_0}>K$.
Let $a>1$ and $K>0$. Show that there exists $n_0∈N$ such that
$a^{n_0}>K$.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
779
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1107 views
- $10.00
Related Questions
- real analysis
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- real analysis
- Prove that $S \subseteq X$ is nowhere dense iff $X-\overline{S}$ is dense.
- Is it true almost all Lebesgue measurable functions are non-integrable?
- Need Upper Bound of an Integral
- Measure Theory and the Hahn Decomposition Theorem
- Prove that every compact Hausdorff space is normal