Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
Answer
By the argument principle, the change in argument of $f(z)$ as $z$ travels around the circle is equal to 2π times the number of zeros minus the number of poles of $f(z)$ inside the circle. The function $f(z)$ does not have any poles. To find the number of zeros of $f(z)$ inside the circle we compare $f(z)$ with the function $z^6$ and apply Rouche’s Theorem. So let $g(z) = z^6$ . On the circle we have
\[|g(z)| = |z| ^6 = 26 = 64\] and
\[|f(z) − g(z)| = | \cos(z)|= \frac{|e ^{iz} + e^{ −iz}|}{ 2}\leq \frac{|e ^{iz}| + |e^{ −iz}|}{ 2} =e^{ |z|} = e ^2 < 64.\]
Thus, Rouche’s Theorem applies and $f(z)$ has the same number of zeros inside the circle as $z^6$ , which is $6$. Thus, the change in argument is $2π × 6 = 12π$.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2653 views
- $10.00
Related Questions
- Notation question. Where does the x in the denominator come from?
- Limit of an Integral of a $C^\infty$-Smooth Function with Compact Support
- Applied calc question 2 and 3
- Parametric, Polar, and Vector-Valued Equations for Kav10
- Fixed points of analytic complex functions on unit disk $\mathbb{D}$
- Calc 3 Question
- Need help with finding equation of the plane containing the line and point. Given the symmetric equation.
- Question for KAV1