Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
Answer
By the argument principle, the change in argument of $f(z)$ as $z$ travels around the circle is equal to 2π times the number of zeros minus the number of poles of $f(z)$ inside the circle. The function $f(z)$ does not have any poles. To find the number of zeros of $f(z)$ inside the circle we compare $f(z)$ with the function $z^6$ and apply Rouche’s Theorem. So let $g(z) = z^6$ . On the circle we have
\[|g(z)| = |z| ^6 = 26 = 64\] and
\[|f(z) − g(z)| = | \cos(z)|= \frac{|e ^{iz} + e^{ −iz}|}{ 2}\leq \frac{|e ^{iz}| + |e^{ −iz}|}{ 2} =e^{ |z|} = e ^2 < 64.\]
Thus, Rouche’s Theorem applies and $f(z)$ has the same number of zeros inside the circle as $z^6$ , which is $6$. Thus, the change in argument is $2π × 6 = 12π$.
Erdos
4.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2345 views
- $10.00
Related Questions
- Evaluate $\int ...\int_{R_n}dV_n(x_1^2 + x_2^2 + ... + x_n^2)$ , where $n$ and $R_n$ is defined in the body of this question.
- Variation of Parameter for Variable Coefficient Equation
- Integrate $\int e^{\sqrt{x}}dx$
- Limits : $x^{-1} \sin(x) $ as x -> 0 and $\tfrac{\ln(x)}{1-x}$ as x-> 0
- How do I compare categorical data with multiple uneven populations?
- Calculus problems on improper integrals
- Prove the trig identity $\frac{\sin x +\tan x}{1+\sec x}=\sin x$
- Find the equation of the tangent line through the function f(x)=3x$e^{5x-5} $ at the point on the curve where x=1