Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
Answer
By the argument principle, the change in argument of $f(z)$ as $z$ travels around the circle is equal to 2π times the number of zeros minus the number of poles of $f(z)$ inside the circle. The function $f(z)$ does not have any poles. To find the number of zeros of $f(z)$ inside the circle we compare $f(z)$ with the function $z^6$ and apply Rouche’s Theorem. So let $g(z) = z^6$ . On the circle we have
\[|g(z)| = |z| ^6 = 26 = 64\] and
\[|f(z) − g(z)| = | \cos(z)|= \frac{|e ^{iz} + e^{ −iz}|}{ 2}\leq \frac{|e ^{iz}| + |e^{ −iz}|}{ 2} =e^{ |z|} = e ^2 < 64.\]
Thus, Rouche’s Theorem applies and $f(z)$ has the same number of zeros inside the circle as $z^6$ , which is $6$. Thus, the change in argument is $2π × 6 = 12π$.
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 3545 views
- $10.00
Related Questions
- Is $\int_0^{\infty}\frac{x+3}{x^2+\cos x}$ convergent?
- Calculus Help
- Integrate $\int x^2\sin^{-1}\left ( \frac{\sqrt{a^2-x^2} }{b} \right ) dx$
- Help
- Analyzing the Domain and Range of the Function $f(x) = \frac{1}{1 - \sin x}$
- Uniform convergence of functions
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- For each A ∈ { Z, Q, } find the cardinality of the set of all increasing bijective functions f : A → A.