Convergence and Integrability of Function Series in Measure Spaces and Applications to Series Expansion Integrals
1) Let $(X,\Sigma,\mu)$ be a measure space and for each n suppose that $f_{n}:X\rightarrow \mathbb{R} $ is an integrable function such that $\sum_{n=1}^{\infty } \int |f_{n}|du$ is convergent.
Prove that $\sum_{n=1}^{\infty } f_{n}$ converges almost everywhere to an integrable function and that
$$\int \sum_{n=1}^{\infty}f_{n} du=\sum_{n=1}^{\infty}\int f_{n}du.$$
2) Use problem 1) to show that
$$ \int_{0}^{1}\sin(x)\ln(x)dx=\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)(2n)!}. $$
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

133
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 619 views
- $20.00
Related Questions
- Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
- $\textbf{I would like a proof in detail of the following question.}$
- Prove that every compact Hausdorff space is normal
- How do we define this choice function using mathematical notation?
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
- Find a general solution for $\int at^ne^{bt}dt$, where $n$ is any integer, and $a$ and $b$ are real constants.
- Need Upper Bound of an Integral
- I need help with the attched problem about definite integrals