Convergence and Integrability of Function Series in Measure Spaces and Applications to Series Expansion Integrals
1) Let $(X,\Sigma,\mu)$ be a measure space and for each n suppose that $f_{n}:X\rightarrow \mathbb{R} $ is an integrable function such that $\sum_{n=1}^{\infty } \int |f_{n}|du$ is convergent.
Prove that $\sum_{n=1}^{\infty } f_{n}$ converges almost everywhere to an integrable function and that
$$\int \sum_{n=1}^{\infty}f_{n} du=\sum_{n=1}^{\infty}\int f_{n}du.$$
2) Use problem 1) to show that
$$ \int_{0}^{1}\sin(x)\ln(x)dx=\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)(2n)!}. $$
Elviegem
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Poincare
133
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 279 views
- $20.00
Related Questions
- real analysis
- Need help with integrals (Urgent!)
- Existence of a Divergent Subsequence to Infinity in Unbounded Sequences
- Derivative of $\int_{\sin x}^{x^2} \cos (t)dt$
- What is the Lebesgue density of $A$ and $B$ which answers a previous question?
- Prove that $A - B=A\cap B^c$
- do not answer
- Riemann Sums for computing $\int_0^3 x^3 dx$