Convergence and Integrability of Function Series in Measure Spaces and Applications to Series Expansion Integrals
1) Let $(X,\Sigma,\mu)$ be a measure space and for each n suppose that $f_{n}:X\rightarrow \mathbb{R} $ is an integrable function such that $\sum_{n=1}^{\infty } \int |f_{n}|du$ is convergent.
Prove that $\sum_{n=1}^{\infty } f_{n}$ converges almost everywhere to an integrable function and that
$$\int \sum_{n=1}^{\infty}f_{n} du=\sum_{n=1}^{\infty}\int f_{n}du.$$
2) Use problem 1) to show that
$$ \int_{0}^{1}\sin(x)\ln(x)dx=\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)(2n)!}. $$
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

133
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1057 views
- $20.00
Related Questions
- Evaluate $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, where $C$ is the unit circle.
- Finding the arc length of a path between two points
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- Center of mass with triple integral
- Function symmetric with respect to the bisector of first and third quadrant
- Prove that $p_B :\prod_{\alpha \in A} X_\alpha \to \prod_{\alpha \in B} X_\alpha$ is a continuous map
- Calc 3 Question
- Find $\int \sec^2 x \tan x dx$