Convergence and Integrability of Function Series in Measure Spaces and Applications to Series Expansion Integrals
1) Let $(X,\Sigma,\mu)$ be a measure space and for each n suppose that $f_{n}:X\rightarrow \mathbb{R} $ is an integrable function such that $\sum_{n=1}^{\infty } \int |f_{n}|du$ is convergent.
Prove that $\sum_{n=1}^{\infty } f_{n}$ converges almost everywhere to an integrable function and that
$$\int \sum_{n=1}^{\infty}f_{n} du=\sum_{n=1}^{\infty}\int f_{n}du.$$
2) Use problem 1) to show that
$$ \int_{0}^{1}\sin(x)\ln(x)dx=\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)(2n)!}. $$
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

133
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 498 views
- $20.00
Related Questions
- What is the integral of (x^2-8)/(x+3)dx
- Measure Theory (A counterexample to interchanging limits and integration)
- Compute the surface integral $ \int_S (∇ × F) \cdot dS $ for $F = (x − y, x + y, ze^{xy})$ on the given surface
- Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.
- Related to Real Analysis
- Integration by $u$ substitution
- real analysis
- Measure Theory and the Hahn Decomposition Theorem