Convergence and Integrability of Function Series in Measure Spaces and Applications to Series Expansion Integrals
1) Let $(X,\Sigma,\mu)$ be a measure space and for each n suppose that $f_{n}:X\rightarrow \mathbb{R} $ is an integrable function such that $\sum_{n=1}^{\infty } \int |f_{n}|du$ is convergent.
Prove that $\sum_{n=1}^{\infty } f_{n}$ converges almost everywhere to an integrable function and that
$$\int \sum_{n=1}^{\infty}f_{n} du=\sum_{n=1}^{\infty}\int f_{n}du.$$
2) Use problem 1) to show that
$$ \int_{0}^{1}\sin(x)\ln(x)dx=\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n)(2n)!}. $$
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
133
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1196 views
- $20.00
Related Questions
- $\textbf{I would like a proof in detail of the following question.}$
- Use Green’s theorem to evaluate the line integral $\int_C (1+xy^2)dx-x^2ydy$ on the arc of a parabola
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- Existence of a Divergent Subsequence to Infinity in Unbounded Sequences
- Evaluate $\iint_{R}e^{-x-y}dx dxy$
- Derivative of $\int_{\sin x}^{x^2} \cos (t)dt$
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$
- Show that the line integral $ \oint_C y z d x + x z d y + x y d z$ is zero along any closed contour C .