A lower bound
Let $\gamma >0$ and $r=(r_n)_{n \in \mathbb{Z} } \in \ell^\infty(\mathbb{Z})$ (a bounded and real-valued sequence). Consider a function $f$ such that $f(x)=\sum\limits_{n \in \mathbb{Z}} r_n \exp \left (-2 \gamma \left (x- \frac{n}{2} \right)^2\right)$ for $x \in \mathbb{R}$.
Prove that there exists a constant $C>0$ such that $\sup\limits_{x \in \mathbb{R} }|f(x)| \geq C \cdot ||r||_\infty$ for all $x\in \mathbb{R}$.
116
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
-
Leave a comment if you need any clarifications.
-
sorry for the late reply. I made a mistake, the sum is supposed to be equal to the absolute value of f. I posted another question with the corrected version.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1756 views
- $10.00
Related Questions
- For each A ∈ { Z, Q, } find the cardinality of the set of all increasing bijective functions f : A → A.
- How do we define this choice function using mathematical notation?
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- A Real Analysis question on convergence of functions
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- [Real Analysis] Show that $B$ is countable.
- continuous function
- A function satifying $|f(x)-f(y)|\leq |x-y|^2$ must be constanct.