A lower bound
Let $\gamma >0$ and $r=(r_n)_{n \in \mathbb{Z} } \in \ell^\infty(\mathbb{Z})$ (a bounded and real-valued sequence). Consider a function $f$ such that $f(x)=\sum\limits_{n \in \mathbb{Z}} r_n \exp \left (-2 \gamma \left (x- \frac{n}{2} \right)^2\right)$ for $x \in \mathbb{R}$.
Prove that there exists a constant $C>0$ such that $\sup\limits_{x \in \mathbb{R} }|f(x)| \geq C \cdot ||r||_\infty$ for all $x\in \mathbb{R}$.
116
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

4.8K
-
Leave a comment if you need any clarifications.
-
sorry for the late reply. I made a mistake, the sum is supposed to be equal to the absolute value of f. I posted another question with the corrected version.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1035 views
- $10.00
Related Questions
- real analysis
- Advanced Modeling Scenario
- True-False real analysis questions
- Prove the following limits of a sequence of sets?
- $\textbf{I would like a proof in detail of the following question.}$
- Prove that $A - B=A\cap B^c$
- real analysis
- How do we take the mean of a mathematical function using statistics?