Uniform convergence of functions
Consider the sequence $\{f_n\}$ defined by $f_n(x) = \frac{nx}{ 1 + nx}$ , for $x ≥ 0$.
a) Find $f(x) = \lim _{n→∞ }f_n(x).$
b) Show that for $a > 0$, $\{f_n\}$ converges uniformly to $f$ on $[a,∞)$.
c) Show that $\{f_n\}$ does not converge uniformly to $f$ on $[0,∞).$
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 756 views
- $20.00
Related Questions
- Evaluate $\int_0^{\frac{\pi}{2}}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} dx$
- Explain parameter elimination for complex curves v2
- Vector-Valued Equations
- Please help me with this math problem I am struggling!
- Let $ X = x i+ y j+z k$, and $r=||X||$. Prove that $\nabla (\frac{1}{r})=-\frac{X}{r^3}.$
- Question for KAV1
- How do you prove integration gives the area under a curve?
- Calculus problems on improper integrals