Uniform convergence of functions
Consider the sequence $\{f_n\}$ defined by $f_n(x) = \frac{nx}{ 1 + nx}$ , for $x ≥ 0$.
a) Find $f(x) = \lim _{n→∞ }f_n(x).$
b) Show that for $a > 0$, $\{f_n\}$ converges uniformly to $f$ on $[a,∞)$.
c) Show that $\{f_n\}$ does not converge uniformly to $f$ on $[0,∞).$
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Erdos
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 708 views
- $20.00
Related Questions
- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.
- Calculate the following, if it exists: $\int_{0}^{1} x^a(lnx)^mdx$ , where $a > -1$ and $m$ is a nonnegative integer.
- You have a piece of 8-inch-wide metal which you are going to make into a gutter by bending up 3 inches on each side
- Optimization problem
- Custom Solutions to Stewart Calculus, Integral
- Integral of trig functions
- Determine the surface area of a ball, rotating a function about $x$-axis.
- The space of continuous functions is a normed vector space