Prove that $S \subseteq X$ is nowhere dense iff $X-\overline{S}$ is dense.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1511 views
- $35.00
Related Questions
- Banach's fixed point theorem application
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- real analysis
- Prove the following limits of a sequence of sets?
- Existence of a Divergent Subsequence to Infinity in Unbounded Sequences
- $\textbf{I would like a proof in detail of the following question.}$
- Rank, Range, Critical Values, Preimage, and Integral of Differential Forms
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$