Prove that a closed subset of a compact set is compact.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1563 views
- $15.00
Related Questions
- real analysis
- real analysis
- real analysis
- Limit of an Integral of a $C^\infty$-Smooth Function with Compact Support
- separability and completeness
- Is it true almost all Lebesgue measurable functions are non-integrable?
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- Interior of union of two sets with empty interior