Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
Suppose $f(x) \in C^2[0,1]$ such that $f(0)=f(1)=0$, and $f(x)\neq 0$ on $(0,1)$. Prove that
$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4.$$
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Savionf
573
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 630 views
- $30.00
Related Questions
- real analysis
- How do you prove integration gives the area under a curve?
- Help
- Convergence of integrals
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$
- Evaluate $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, where $C$ is the unit circle.
- Integration
- Compute $\lim_{x \rightarrow 0} \frac{1-\arctan (\sin(x)+1)}{e^{x}-1}$