Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
Suppose $f(x) \in C^2[0,1]$ such that $f(0)=f(1)=0$, and $f(x)\neq 0$ on $(0,1)$. Prove that
$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4.$$
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

574
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1339 views
- $30.00
Related Questions
- A lower bound for an exponential series
- Compute $\lim_{n \rightarrow \infty} \ln \frac{n!}{n^n}$
- Convergence of integrals
- Use Green’s theorem to compute $\int_C x^2 ydx − xy^2 dy$ where $C$ is the circle $x^2 + y ^2 = 4$ oriented counter-clockwise.
- Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.
- real analysis
- Prove that convergence of the infinite series of integral of absolue values of a sequence of functions implies convergence
- Triple integral