Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
Suppose $f(x) \in C^2[0,1]$ such that $f(0)=f(1)=0$, and $f(x)\neq 0$ on $(0,1)$. Prove that
$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4.$$
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Savionf
577
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 616 views
- $30.00
Related Questions
- Prove the following limits of a sequence of sets?
- A bicycle with 18in diameter wheels has its gears set so that the chain has a 6 in. Radius on the front sprocket and 4 in radius on the rear sprocket. The cyclist pedals at 180 rpm.
- Notation question. Where does the x in the denominator come from?
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Integrate $\int \frac{1}{x^2+x+1}dx$
- Two persons with the same number of acquaintance in a party
- highschool class help
- Determine where the following function is discontinuous