Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
Suppose $f(x) \in C^2[0,1]$ such that $f(0)=f(1)=0$, and $f(x)\neq 0$ on $(0,1)$. Prove that
$$\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4.$$
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
574
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1485 views
- $30.00
Related Questions
- Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
- Explain parameter elimination for complex curves v2
- Answer is done but need help
- Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
- Equations of Motion and Partial Fractions
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- I need help with the attched problem about definite integrals
- Green's Theorem