separability and completeness

Let $A = \{ a ∈ R^∞ \Bigg| \sum_{k=1}^{∞} a_k= 0\}$. Determine whether $(A, d_∞)$ is separable and whether it is complete

Let $A = \{ f(x) = \sum_{k=1}^n c_kx^k \Bigg| n ∈ \mathbb{Z}^+, |c_k| ≤ 1$ for all $k\}$ $⊆ (C([0, 1], R), d_∞).$ Determine whether $(A, d∞)$ is separable and whether it is complete

  • Dynkin Dynkin
    0

    While these are standard facts writing out the details will take more time than the bounty is worth.

  • Erdos Erdos
    0

    I second that. The offered bounty is too low.

Answer

Answers can only be viewed under the following conditions:
  1. The questioner was satisfied with and accepted the answer, or
  2. The answer was evaluated as being 100% correct by the judge.
View the answer
The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to a 50% commission on every question that your affiliated users ask or answer.