[Real Analysis] Show that $B$ is countable.
Let
$B = \{f :{\displaystyle \mathbb {R}}→{\displaystyle \mathbb {R}}$ such that $f(x) =$$\sum_{n=1}^{N} a_nx^n$, $N ∈{\displaystyle \mathbb {N}}, a_1, . . . , a_N ∈{\displaystyle \mathbb {N}}\}$.
Show that $B$ is countable.
Reference material attached.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
12
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1290 views
- $10.00
Related Questions
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- How to properly write rational exponents when expressed as roots?
- Use first set of data to derive a second set
- Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
- Interior of union of two sets with empty interior
- Need Upper Bound of an Integral
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$