[Real Analysis] Show that $B$ is countable.
Let
$B = \{f :{\displaystyle \mathbb {R}}→{\displaystyle \mathbb {R}}$ such that $f(x) =$$\sum_{n=1}^{N} a_nx^n$, $N ∈{\displaystyle \mathbb {N}}, a_1, . . . , a_N ∈{\displaystyle \mathbb {N}}\}$.
Show that $B$ is countable.
Reference material attached.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

12
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1159 views
- $10.00
Related Questions
- Is it true almost all Lebesgue measurable functions are non-integrable?
- real analysis
- A Real Analysis question on convergence of functions
- Generalization of the Banach fixed point theorem
- Accumulation points question (Real Analysis)
- True-False real analysis questions
- [Real Analysis] Show that the set $A$ is uncountable. Use this result to show that ${\displaystyle\mathbb {R}}$ is uncountable.
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous