A lower bound for an exponential series
Let $\gamma >0$ and $r=(r_n)_{n \in \mathbb{Z} } \in \ell^\infty(\mathbb{Z})$ (a bounded and real-valued sequence), where $r_n \geq 0 \ \forall \ n \in \mathbb{Z}$. Consider the function $f(x)=\sum\limits_{n \in \mathbb{Z}} r_n \exp \left (-2 \gamma \left (x- \frac{n}{2} \right)^2\right)$ for $x \in \mathbb{R}$.
Prove that there exists a constant $C>0$ such that $\sup\limits_{x \in \mathbb{R} }|f(x)| \geq C \cdot ||r||_\infty$.
116
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
3.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1805 views
- $17.00
Related Questions
- Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
- real analysis
- Prove that $A - B=A\cap B^c$
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- Limit Superior, Limit Inferior, and Convergence Properties of Bounded Sequences
- Show that ${(x,\sin(1/x)) : x∈(0,1]} ∪ {(0,y) : y ∈ [-1,1]}$ is closed in $\mathbb{R^2}$ using sequences
- Why does $ \sum\limits_{n=1}^{\infty } 2^{2n} \times \frac{(n!)^2}{n(2n+1)(2n)!} =2 $ ?
The statement doesn't make much sense. You are taking the supremum is the left had side over all x \in R and they say for all x \in R. Did you mean having just f(x) without supremum in the left hand side of what you wish to prove?
yes my bad, I corrected it. thanks
I still think "sup" should be replaced by "inf" for the problem to make sense.
Proving the statement with "sup" is trivially easy.
For inf it is equally trivial.
would it be equally trivial if I didn't require each r_n to be non-negative?