Prove that $A - B=A\cap B^c$
Answer
Let $x \in A \setminus B$. By definition $x \in A$ and $x \not \in B$, or equivalently $x \in B^c$; it follows that $x \in A \cap B^c$, so $A \setminus B \subseteq A \cap B^c $.
Let $x \in A \cap B^c$. By definition $x \in A$ and $x \in B^c $, or equivalently $x \not \in B$; it follows that $x \in A \setminus B$, so $A \cap B^c \subseteq A \setminus B$.
The double inclusion holds, so $A \setminus B = A \cap B ^c$.
1.7K
-
Thank you so much :)
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2785 views
- $3.00
Related Questions
- Algebra 2 problem about a ticket system
- The space of continuous functions is a normed vector space
- Minimizing the cost of building a box
- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- Three questions on Vectors
- If both $n$ and $\sqrt{n^2+204n}$ are positive integers, find the maximum value of $𝑛$.
- Mathematical modeling