Prove that $A - B=A\cap B^c$
Answer
Let $x \in A \setminus B$. By definition $x \in A$ and $x \not \in B$, or equivalently $x \in B^c$; it follows that $x \in A \cap B^c$, so $A \setminus B \subseteq A \cap B^c $.
Let $x \in A \cap B^c$. By definition $x \in A$ and $x \in B^c $, or equivalently $x \not \in B$; it follows that $x \in A \setminus B$, so $A \cap B^c \subseteq A \setminus B$.
The double inclusion holds, so $A \setminus B = A \cap B ^c$.
-
Thank you so much :)
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
- answered
- 325 views
- $3.00
Related Questions
- Prove that $p_B :\prod_{\alpha \in A} X_\alpha \to \prod_{\alpha \in B} X_\alpha$ is a continuous map
- Show that $\int_0^{\frac{\pi}{2}}\frac{ x}{ \tan x}dx=\frac{\pi}{2} \ln 2$
- Graph Equation from Test
- Find $x$, if $\sqrt{x} + 2y^2 = 15$ and $\sqrt{4x} − 4y^2 = 6$.
- Does the sequence $f_n=\arctan (\frac{2x}{x^2+n^3})$ converge uniformly on $\mathbb{R}$?
- Representation theory question
- Tensor Product II
- Clock Problem