Artin-Wedderburn isomorphism of $\mathbb{C}[S_3]$
By the Artin - Wedderburn theorem, we know $\mathbb{C}[S_3] \cong \mathbb{C}\oplus \mathbb{C}\oplus Mat_{2x2}(\mathbb{C}) $, and the isomorphism is given by $g \mapsto (1, sgn(g), \rho(g))$, where $ \rho : \mathbb{C}[S_3] \rightarrow Mat_{2x2}(\mathbb{C})$ is a 2-dimensional irreducible representation (permutation representation modulo fixed points). Prove directly that this map is an isomorphism.
Answer
Answers can be viewed only if
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
1 Attachment
The answer is accepted.
- answered
- 115 views
- $12.00
Related Questions
-
The given equation is x² - 2mx + 2m - 1=0
Determine m. - Value Of Investment
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
- Get area of rotated polygon knowing all coordinates and angle.
- Graph the pair of equations in the same rectangular coordinate system: Y=-2x ; y=-2
- Attempting to make a formula/algorithm based on weighted averages to find how much equipment we need to maintain.
- Algebra Word Problem #1
- How old is the wise man?