Artin-Wedderburn isomorphism of $\mathbb{C}[S_3]$
By the Artin - Wedderburn theorem, we know $\mathbb{C}[S_3] \cong \mathbb{C}\oplus \mathbb{C}\oplus Mat_{2x2}(\mathbb{C}) $, and the isomorphism is given by $g \mapsto (1, sgn(g), \rho(g))$, where $ \rho : \mathbb{C}[S_3] \rightarrow Mat_{2x2}(\mathbb{C})$ is a 2-dimensional irreducible representation (permutation representation modulo fixed points). Prove directly that this map is an isomorphism.
152
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1498 views
- $12.00
Related Questions
- Solve $abc=2(a-2)(b-2)(c-2)$ where $a,b $ and $c$ are integers
- Five times the larger of two consecutive odd integers is equal to one more than eight times the smaller. Find the integers.
- Find $\lim _{x \rightarrow 0} x^{x}$
- Element satisfying cubic equation in degree $5$ extension
- Length of a matrix module
- Prove that $1+\frac{1}{\sqrt{2}}+\dots+\frac{1}{\sqrt{n}} \leq 2 \sqrt{n}-1$
- Zariski Topology and Regular Functions on Algebraic Varieties in Affine Space
- Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?