Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
Answer
We have
\[\begin{pmatrix} 2x \cos (yz)& -x^2z \sin (yz) & -x^2 y \sin (yz) \\ 2x y \cos (x^2y) -1& x^2\cos (x^2y) & 0 \\ 0 & \sin z e^{y \sin z} & y\cos z e^{y \sin z} \end{pmatrix}. \]
Note that
- the firts row is partial derivatives of $x^2 \cos (yz)$ with respect to $x,y,$ and $z$, respectively.
- the second row is partial derivatives of $\sin (x^2y)-x$ with respect to $x,y,$ and $z$, respectively.
- the third row is partial derivatives of $e^{y\sin z}$ with respect to $x,y,$ and $z$, respectively.
-
Let me know if you have any questions.
The answer is accepted.
- answered
- 234 views
- $5.00
Related Questions
- Let $R$ be an integral domain and $M$ a finitely generated $R$-module. Show that $rank(M/Tor(M))$=$rank(M)$
- Determine the angle
- Volume of the solid of revolution
- highschool class help
- MAT-144 Assignment
- Epsilon delta 2
- < Derivative of a periodic function.
- Derivative of $\int_{\sin x}^{x^2} \cos (t)dt$