Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
37
Answer
We have
\[\begin{pmatrix} 2x \cos (yz)& -x^2z \sin (yz) & -x^2 y \sin (yz) \\ 2x y \cos (x^2y) -1& x^2\cos (x^2y) & 0 \\ 0 & \sin z e^{y \sin z} & y\cos z e^{y \sin z} \end{pmatrix}. \]
Note that
- the firts row is partial derivatives of $x^2 \cos (yz)$ with respect to $x,y,$ and $z$, respectively.
- the second row is partial derivatives of $\sin (x^2y)-x$ with respect to $x,y,$ and $z$, respectively.
- the third row is partial derivatives of $e^{y\sin z}$ with respect to $x,y,$ and $z$, respectively.
443
-
Let me know if you have any questions.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2912 views
- $5.00
Related Questions
- Integrate $\int \frac{1}{x^2+x+1}dx$
- Reverse this equation/function (2d to isometric)
- Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$
- Transformations of Parent Functions
- The cross sectional area of a rod has a radius that varies along its length according to the formula r = 2x. Find the total volume of the rod between x = 0 and x = 10 inches.
- Find the volume of the solid obtained by rotating $y=x^2$ about y-axis, between $x=1$ and $x=2$, using the shell method.
- Zariski Topology and Regular Functions on Algebraic Varieties in Affine Space
- Help with Business Calculus problem.