Prove that convergence of the infinite series of integral of absolue values of a sequence of functions implies convergence
Let $(X,\Sigma,\mu)$ be a measure space and let $f_{n}:X\rightarrow \mathbb{R} $ is an integrable function such that $\sum_{n=1}^{\infty } \int |f_{n}|du$ is convergent.
Prove that $\sum_{n=1}^{\infty } f_{n}$ converges almost everywhere to an integrable function and that
$$\int \sum_{n=1}^{\infty}f_{n} du=\sum_{n=1}^{\infty}\int f_{n}du.$$
17
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

443
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1837 views
- $40.00
Related Questions
- Probability/Analysis Question
- real analysis
- Find the cardinality of the set of all norms on R^n (hint: show that every norm || || : R n → R is continuous).
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$
- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.
- real analysis
- Prove that $p_B :\prod_{\alpha \in A} X_\alpha \to \prod_{\alpha \in B} X_\alpha$ is a continuous map
- Show that $\int_0^{\frac{\pi}{2}}\frac{ x}{ \tan x}dx=\frac{\pi}{2} \ln 2$