Limit Superior, Limit Inferior, and Convergence Properties of Bounded Sequences
1. Let $\{x_n\}$ be a bounded sequence of non-negative numbers such that for every $\epsilon > 0$, we have
$$ \limsup x_n < \epsilon.$$
Prove that $x_n \to 0$.
2. For a bounded sequence $\{x_n\}$, prove that
$$\liminf x_n = x$$
if and only if for every $\epsilon > 0$, infinitely many terms of $\{x_n\}$ are less than $x + \epsilon$, and eventually, all terms are greater than $x - \epsilon$.
3. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive numbers such that $\{a_n\}$ is bounded and $\{b_n\}$ converges. Prove that
$$\limsup (a_n b_n) = (\limsup a_n) \cdot (\lim b_n).$$
36
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

574
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 756 views
- $20.00
Related Questions
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- real analysis
- How to properly write rational exponents when expressed as roots?
- separability and completeness
- Advanced Modeling Scenario
- Prove the uniqueness of a sequence using a norm inequality.
- A problem on almost singular measures in real analysis
- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.