Limit Superior, Limit Inferior, and Convergence Properties of Bounded Sequences
1. Let $\{x_n\}$ be a bounded sequence of non-negative numbers such that for every $\epsilon > 0$, we have
$$ \limsup x_n < \epsilon.$$
Prove that $x_n \to 0$.
2. For a bounded sequence $\{x_n\}$, prove that
$$\liminf x_n = x$$
if and only if for every $\epsilon > 0$, infinitely many terms of $\{x_n\}$ are less than $x + \epsilon$, and eventually, all terms are greater than $x - \epsilon$.
3. Let $\{a_n\}$ and $\{b_n\}$ be two sequences of positive numbers such that $\{a_n\}$ is bounded and $\{b_n\}$ converges. Prove that
$$\limsup (a_n b_n) = (\limsup a_n) \cdot (\lim b_n).$$
36
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.

573
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 57 views
- $20.00
Related Questions
- $\textbf{I would like a proof in detail of the following question.}$
- Subsets and Sigma Algebras: Proving the Equality of Generated Sigma Algebras
- Prove that $S \subseteq X$ is nowhere dense iff $X-\overline{S}$ is dense.
- What is the asymptotic density of $A$ and $B$ which partition the reals into subsets of positive measure?
- real analysis
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- real analysis