Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
Answer
Note that $f_n(x)$ is a Riemann sum and converges to $\int ^{x+1} _{x} f(t) dt$ as $n → ∞$. Let (a, b) be a finite interval. Then
\[ f_n(x) − \int ^{x+1} _{x} f(t) dt= \sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n} (f(x + k/n) − f(t)) dt. \]
Since f is uniformly continuous on $[a, b + 1]$ we have that $|f(x + k/n)−f(t)| < \epsilon$ for all $x ∈ [a, b], x + k/n ≤ t ≤ x + (k + 1)/n, 0 ≤ k ≤ n − 1$, and for all $n$ sufficiently large. Therefore
\[\sup_{x \in [a,b]}|f_n(x)-\int ^{x+1} _{x} f(t) dt| <\sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n}\epsilon=n \times \epsilon/n=\epsilon. \]
Hence $f_n$ converges uniformly on $[a,b]$ to $\int ^{x+1} _{x} f(t) dt$.
Erdos
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1329 views
- $20.00
Related Questions
- real analysis
- Is it true almost all Lebesgue measurable functions are non-integrable?
- Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
- Limit of an Integral of a $C^\infty$-Smooth Function with Compact Support
- How to properly write rational exponents when expressed as roots?
- Prove that every compact Hausdorff space is normal
- Analyzing the Domain and Range of the Function $f(x) = \frac{1}{1 - \sin x}$
- continuous function