# Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.

## Answer

\[ f_n(x) − \int ^{x+1} _{x} f(t) dt= \sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n} (f(x + k/n) − f(t)) dt. \]

Since f is uniformly continuous on $[a, b + 1]$ we have that $|f(x + k/n)−f(t)| < \epsilon$ for all $x ∈ [a, b], x + k/n ≤ t ≤ x + (k + 1)/n, 0 ≤ k ≤ n − 1$, and for all $n$ sufficiently large. Therefore

\[\sup_{x \in [a,b]}|f_n(x)-\int ^{x+1} _{x} f(t) dt| <\sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n}\epsilon=n \times \epsilon/n=\epsilon. \]

Hence $f_n$ converges uniformly on $[a,b]$ to $\int ^{x+1} _{x} f(t) dt$.

Erdos

4.7K

The answer is accepted.

Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.

- answered
- 913 views
- $20.00

### Related Questions

- Fix any errors in my proof (beginner)
- Analyzing the Domain and Range of the Function $f(x) = \frac{1}{1 - \sin x}$
- Show that $\int_0^{\frac{\pi}{2}}\frac{ x}{ \tan x}dx=\frac{\pi}{2} \ln 2$
- Fix any errors in my proof (beginner)
- How to properly write rational exponents when expressed as roots?
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
- Topic: Large deviations, in particular: Sanov's theorem
- continuous function