Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
Answer
Note that $f_n(x)$ is a Riemann sum and converges to $\int ^{x+1} _{x} f(t) dt$ as $n → ∞$. Let (a, b) be a finite interval. Then
\[ f_n(x) − \int ^{x+1} _{x} f(t) dt= \sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n} (f(x + k/n) − f(t)) dt. \]
Since f is uniformly continuous on $[a, b + 1]$ we have that $|f(x + k/n)−f(t)| < \epsilon$ for all $x ∈ [a, b], x + k/n ≤ t ≤ x + (k + 1)/n, 0 ≤ k ≤ n − 1$, and for all $n$ sufficiently large. Therefore
\[\sup_{x \in [a,b]}|f_n(x)-\int ^{x+1} _{x} f(t) dt| <\sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n}\epsilon=n \times \epsilon/n=\epsilon. \]
Hence $f_n$ converges uniformly on $[a,b]$ to $\int ^{x+1} _{x} f(t) dt$.
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2242 views
- $20.00
Related Questions
- Prove that: |x| + |y| ≤ |x + y| + |x − y|.
- A problem on almost singular measures in real analysis
- Use first set of data to derive a second set
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- For each A ∈ { Z, Q, } find the cardinality of the set of all increasing bijective functions f : A → A.
- Topic: Large deviations, in particular: Sanov's theorem
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- [ Banach Fixt Point Theorem ] $\frac{dy} {dx} = xy, \text{with} \ \ y(0) = 3,$