Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
Answer
Note that $f_n(x)$ is a Riemann sum and converges to $\int ^{x+1} _{x} f(t) dt$ as $n → ∞$. Let (a, b) be a finite interval. Then
\[ f_n(x) − \int ^{x+1} _{x} f(t) dt= \sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n} (f(x + k/n) − f(t)) dt. \]
Since f is uniformly continuous on $[a, b + 1]$ we have that $|f(x + k/n)−f(t)| < \epsilon$ for all $x ∈ [a, b], x + k/n ≤ t ≤ x + (k + 1)/n, 0 ≤ k ≤ n − 1$, and for all $n$ sufficiently large. Therefore
\[\sup_{x \in [a,b]}|f_n(x)-\int ^{x+1} _{x} f(t) dt| <\sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n}\epsilon=n \times \epsilon/n=\epsilon. \]
Hence $f_n$ converges uniformly on $[a,b]$ to $\int ^{x+1} _{x} f(t) dt$.
- answered
- 1237 views
- $20.00
Related Questions
- Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
- real analysis
- Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.
- Prove Property of Projection Matrices
-
Math Proofs: "An alternative notation is sometimes used for the union or intersection of an indexed family of sets."
- Constructing Monotonic Sequences Converging to an Accumulation Point in a Subset of $\mathbb{R}$
- Use first set of data to derive a second set
- Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.