# Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.

## Answer

\[ f_n(x) − \int ^{x+1} _{x} f(t) dt= \sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n} (f(x + k/n) − f(t)) dt. \]

Since f is uniformly continuous on $[a, b + 1]$ we have that $|f(x + k/n)−f(t)| < \epsilon$ for all $x ∈ [a, b], x + k/n ≤ t ≤ x + (k + 1)/n, 0 ≤ k ≤ n − 1$, and for all $n$ sufficiently large. Therefore

\[\sup_{x \in [a,b]}|f_n(x)-\int ^{x+1} _{x} f(t) dt| <\sum \limits ^{n−1} _{k=0} \int ^{x+(k+1)/n}_{ x+k/n}\epsilon=n \times \epsilon/n=\epsilon. \]

Hence $f_n$ converges uniformly on $[a,b]$ to $\int ^{x+1} _{x} f(t) dt$.

The answer is accepted.

Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.

- answered
- 271 views
- $20.00

### Related Questions

- real analysis
- Fix any errors in my proof (beginnner)
- Measure Theory and the Hahn Decomposition Theorem
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- Prove that $f$ is a diffeomorphism $C^∞$, that maps... (More inside)
- Find the cardinality of the set of all norms on R^n (hint: show that every norm || || : R n → R is continuous).
- Does the sequence $f_n=\arctan (\frac{2x}{x^2+n^3})$ converge uniformly on $\mathbb{R}$?
- Calculating P values from data.