$\textbf{I would like a proof in detail of the following question.}$
let $ f:[a,b)\rightarrow \mathbb{R} $ be a bounded function which is Riemann integrable on [a,c] whenever $a< c< b$. Define the function $F:\left[ a,b\right)\rightarrow \mathbb{R} $ by the formula $F(x)=\int_{a}^{x} f$ . Prove that $F$ has a limit at $b$ and the integral of $f$ over $[a,b)$ can be defined to equal this limit.
Homeomorfo Fle
121
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Mathe
3.5K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 669 views
- $6.00
Related Questions
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- do not answer
- Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.
- A lower bound
- Prove the uniqueness of a sequence using a norm inequality.
- separability and completeness
- Pathwise connected
- Accumulation points question (Real Analysis)