# Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.

## Answer

\[f(x_n)=0,\]

and $\lim_{n\rightarrow \infty} x_n=x_0 \in [0,1]$ with $x_n \neq x_0$. Since $f$ is continuous,

\[f(x_0)=\lim_{n\rightarrow \infty} f(x_n)= \lim_{n\rightarrow \infty} 0=0.\]

Thus

\[f'(x_0)=\lim_{x \rightarrow x_0}\frac{f(x)-f(x_0)}{x-x_0}=\lim_{n \rightarrow \infty}\frac{f(x_n)-f(x_0)}{x_n-x_0}\]

\[=\lim_{n \rightarrow \infty}\frac{0-0}{x_n-x_0}=0.\]

Hence $f(x_0)=f'(x_0)=0$, $x_0 \in [0,1]$ which is a contradiction. So $S$ must be finite.

The answer is accepted.

- answered
- 175 views
- $10.00

### Related Questions

- Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
- Prove that $S \subseteq X$ is nowhere dense iff $X-\overline{S}$ is dense.
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- How do I compare categorical data with multiple uneven populations?
- real analysis
- Does the sequence $f_n=\arctan (\frac{2x}{x^2+n^3})$ converge uniformly on $\mathbb{R}$?
- real analysis
- real analysis