Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.
Answer
Suppose $T^*$ is not one-to-one. Then there exists $f_1,f_2 \in W^*$ with $f_1\neq f_2$ such that \[ T^*(f_1)=T^*(f_2). \] Thus \[ f_1(Tv)=f_2(Tv), \forall v\in V. \] and hence $(f_1-f_2)(Tv)=0$, $\forall v \in V$, i.e. \[f_1-f_2=0, \forall w\in Img (T).\] Since $f_1-f_2$ is continuous, it also vanishes on $\overline{Img(T)}=W$, and therefore $f_1-f_2=0$ on $W$, which contradicts the assumption $f_1 \neq f_2$. The proof is complete.

574
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2304 views
- $18.00
Related Questions
- real analysis
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- Prove the uniqueness of a sequence using a norm inequality.
- Prove that $A - B=A\cap B^c$
- Use first set of data to derive a second set
- Calculating the residues at the poles of $f(z) = \frac{\tan(z) }{z^2 + z +1} $
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$