Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.
Answer
Suppose $T^*$ is not one-to-one. Then there exists $f_1,f_2 \in W^*$ with $f_1\neq f_2$ such that \[ T^*(f_1)=T^*(f_2). \] Thus \[ f_1(Tv)=f_2(Tv), \forall v\in V. \] and hence $(f_1-f_2)(Tv)=0$, $\forall v \in V$, i.e. \[f_1-f_2=0, \forall w\in Img (T).\] Since $f_1-f_2$ is continuous, it also vanishes on $\overline{Img(T)}=W$, and therefore $f_1-f_2=0$ on $W$, which contradicts the assumption $f_1 \neq f_2$. The proof is complete.

574
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2985 views
- $18.00
Related Questions
- real analysis
- Calculating the residues at the poles of $f(z) = \frac{\tan(z) }{z^2 + z +1} $
- Some final thoughts and closing out this question
- Prove that every compact Hausdorff space is normal
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- A problem on almost singular measures in real analysis
- Is it true almost all Lebesgue measurable functions are non-integrable?
- Prove that $\int _0^{\infty} \frac{1}{1+x^{2n}}dx=\frac{\pi}{2n}\csc (\frac{\pi}{2n})$