Calculating the residues at the poles of $f(z) = \frac{\tan(z) }{z^2 + z +1} $
Should one start by factoring the denominator ? Then using a theorem from complex analysis about the residues at the poles of functions of the form p(z)/q(z)?
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
649
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1526 views
- $10.00
Related Questions
- Why is the distribution of primes considered mysterious or unpredictable?
- Complex Integral
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Compute $$\oint_{|z-2|=2} \frac{\cos e^z}{z^2-4}dz$$
- Evaluate $\frac{1}{2 \pi i}\int_{|x|=1} \frac{z^{11}}{12z^{12}-4z^9+2z^6-4z^3+1}dz$
- A bijective map between a horizontal strip and the unit disc.
- Sigma-Algebra Generated by Unitary Subsets and Its Measurable Functions
- Exercise 4.33 from Spivak's Calculus on Manifolds.
I didn't create the proper deadline, but I would like to have this done ASAP.
Not possible, I accepted this because of deadline 23 hours I am outside ! You can delete the post of you want to
@ Aman R: A question can not be deleted after it has been accepted. Please submit a blank solution, and all funded will be refunded.
Okay thank you