Prove that $\int _0^{\infty} \frac{1}{1+x^{2n}}dx=\frac{\pi}{2n}\csc (\frac{\pi}{2n})$
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1637 views
- $40.00
Related Questions
- Exercise 4.33 from Spivak's Calculus on Manifolds.
- Vector field
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
- Show that the distance between two nonparallel lines is given by $\frac{|(p_2-p_1)\cdot (a_1\times a_2)|}{|| a_2\times a_1||}$
- Vector-valued functions and Jacobian matrix
- Need help with this calculus question please
- Velocity of a rock
- Convergence of $\sum\limits_{n=1}^{\infty}(-1)^n\frac{n+2}{n^2+n+1}$