Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
Answer
Writing the limit in polar coordinates (i.e. $x=r \cos \theta$ and $y=r \sin \theta$) we get
\[\lim_{(x,y) \rightarrow (0,0)}\frac{(x^2-y^2)\cos(x+y)}{x^2+y^2}=\lim_{r \rightarrow 0} \frac{r^2(\cos^2 \theta-\sin^2 \theta) \cos(r(\cos \theta +\sin \theta))}{r^2}\]
\[=\lim_{r \rightarrow 0} (\cos^2 \theta-\sin^2 \theta) \cos(r(\cos \theta +\sin \theta))\]
\[=\cos^2 \theta-\sin^2 \theta. \]
Since the above depends on $\theta$ the limit is question does not exists. Indeed on the line $y=x$ we have $\theta=\frac{\pi}{4}$
\[\cos^2 \theta-\sin^2 \theta =(\frac{\sqrt{2}}{2})^2-(\frac{\sqrt{2}}{2})^2=0.\]
On the line $y=0$ we have $\theta=0$, and hence
\[\cos^2 \theta-\sin^2 \theta =1^2-0^2=1.\]
Thus the limit does not exist, since if it exists it must be unique.

- answered
- 2389 views
- $2.00
Related Questions
- Set theory question
- What is f(x). I've been trying to understand it for so long, but I always get different answers, I feel like I'm going crazy. Please someone explain it and read my whole question carefully.
- Evaluate the surface integral $\iint_{S}F \cdot dn$ over the given surface $S$
- Differentiate $f(x)=\int_{\sqrt{x}}^{\arcsin x} \ln\theta d \theta$
- Calculus problem
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Solve $abc=2(a-2)(b-2)(c-2)$ where $a,b $ and $c$ are integers
- Is $\int_0^{\infty}\frac{x+3}{x^2+\cos x}$ convergent?