Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
Answer
Writing the limit in polar coordinates (i.e. $x=r \cos \theta$ and $y=r \sin \theta$) we get
\[\lim_{(x,y) \rightarrow (0,0)}\frac{(x^2-y^2)\cos(x+y)}{x^2+y^2}=\lim_{r \rightarrow 0} \frac{r^2(\cos^2 \theta-\sin^2 \theta) \cos(r(\cos \theta +\sin \theta))}{r^2}\]
\[=\lim_{r \rightarrow 0} (\cos^2 \theta-\sin^2 \theta) \cos(r(\cos \theta +\sin \theta))\]
\[=\cos^2 \theta-\sin^2 \theta. \]
Since the above depends on $\theta$ the limit is question does not exists. Indeed on the line $y=x$ we have $\theta=\frac{\pi}{4}$
\[\cos^2 \theta-\sin^2 \theta =(\frac{\sqrt{2}}{2})^2-(\frac{\sqrt{2}}{2})^2=0.\]
On the line $y=0$ we have $\theta=0$, and hence
\[\cos^2 \theta-\sin^2 \theta =1^2-0^2=1.\]
Thus the limit does not exist, since if it exists it must be unique.
- answered
- 2182 views
- $2.00
Related Questions
- Quick question regarding Analytical Applications of Differentiation
- Find the average of $f(x)=\sin x$ on $[0, \pi]$.
- Double Integrals
- Is $\sum_{n=1}^{\infty}\frac{\arctan (n!)}{n^2}$ convergent or divergent?
- Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(2n)+2f(2m)=f(f(n+m))$, $\forall m,n\in \mathbb{Z}$
- Show that $\psi:L(E,L(E,F))\rightarrow L^2(E,F)$ given by $[\psi(T)](u,v)=[T(u)](v)$ is a linear homeomorphism
- Please solve the attached problem from my worksheet
- Calculus Questions