Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
Answer
Writing the limit in polar coordinates (i.e. $x=r \cos \theta$ and $y=r \sin \theta$) we get
\[\lim_{(x,y) \rightarrow (0,0)}\frac{(x^2-y^2)\cos(x+y)}{x^2+y^2}=\lim_{r \rightarrow 0} \frac{r^2(\cos^2 \theta-\sin^2 \theta) \cos(r(\cos \theta +\sin \theta))}{r^2}\]
\[=\lim_{r \rightarrow 0} (\cos^2 \theta-\sin^2 \theta) \cos(r(\cos \theta +\sin \theta))\]
\[=\cos^2 \theta-\sin^2 \theta. \]
Since the above depends on $\theta$ the limit is question does not exists. Indeed on the line $y=x$ we have $\theta=\frac{\pi}{4}$
\[\cos^2 \theta-\sin^2 \theta =(\frac{\sqrt{2}}{2})^2-(\frac{\sqrt{2}}{2})^2=0.\]
On the line $y=0$ we have $\theta=0$, and hence
\[\cos^2 \theta-\sin^2 \theta =1^2-0^2=1.\]
Thus the limit does not exist, since if it exists it must be unique.
- answered
- 2247 views
- $2.00
Related Questions
- Show that $\psi:L(E,L(E,F))\rightarrow L^2(E,F)$ given by $[\psi(T)](u,v)=[T(u)](v)$ is a linear homeomorphism
- Find the quadratic approximation of the following functions at the given points
- Fields and Galois theory
- Answer is done,
- Attempting to make a formula/algorithm based on weighted averages to find how much equipment we need to maintain.
- Find rational numbers A & B given the attached formula
- Evaluate $\int \sqrt{\tan x} dx$
- Find $\lim _{x \rightarrow 0} x^{x}$