Find the domain of the function $f(x)=\frac{\ln (1-\sqrt{x})}{x^2-1}$
Find the domain of the function
$$f(x)=\frac{\ln (1-\sqrt{x})}{x^2-1}.$$
Please show work.

60
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
93
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 909 views
- $2.00
Related Questions
- Existence of a Divergent Subsequence to Infinity in Unbounded Sequences
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- Volume of the solid of revolution
- Attempting to make a formula/algorithm based on weighted averages to find how much equipment we need to maintain.
- Is the $\mathbb{C}$-algebra $Fun(X,\mathbb{C})$ semi-simple?
- Hs level math (problem solving) *der
- Convergence of integrals
- Find H $\langle H \rangle=P+\frac{1}{AD} \sum_{i=0}^{D} ( \sum_{j=0}^{A} ((j-i)Step(j-i)))$