Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
Hello. I am confused about how to solve the following Lagrange multiplier problem. It involves in inequality in the constraint so I began by finding the extrema within that domain by simply setting the first derivatives of f to 0, and finding that there is an extremum at (0, 0). However, the absolute values in the constraint confuse me when I try to use Lagrange multipliers. Can someone help me?
Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
2.1K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1222 views
- $9.00
Related Questions
- Evaluate $\iint_D (x^2+y^2)^{3/2}dxdy$
- Improper integral convergence
- Rewrite $\int_{\sqrt2}^{2\sqrt2} \int_{-\pi/2}^{-\pi/4} r^2cos(\theta)d\theta dr$ in cartesian coordinates (x,y)
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
- Does $\sum_{n=2}^{\infty}\frac{\sin n}{n \ln n}$ converge or diverge?
- Finding the arc length of a path between two points
- Minimizing the cost of building a box
- Show that the MLE for $\sum_{i=1}^{n}\left(\ln{2x_i} - 2\ln{\lambda} - \left(\frac{x_i}{\lambda}\right)^2\right)$ is $\hat{\lambda} = \sqrt{\sum_{i=1}^{n}\frac{x_i^2}{n}}$.