Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
Hello. I am confused about how to solve the following Lagrange multiplier problem. It involves in inequality in the constraint so I began by finding the extrema within that domain by simply setting the first derivatives of f to 0, and finding that there is an extremum at (0, 0). However, the absolute values in the constraint confuse me when I try to use Lagrange multipliers. Can someone help me?
Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Kav10
1.9K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 421 views
- $9.00
Related Questions
- highschool class help
- Evaluate the limit Please explain all steps
- Calculus Integral Questins
- Quick question regarding Analytical Applications of Differentiation
- Use Rouche’s Theorem to show that all roots of $z ^6 + (1 + i)z + 1 = 0$ lines inside the annulus $ \frac{1}{2} \leq |z| \leq \frac{5}{4}$
- Equation with partial derivative
- Reduction formulae
- Evaluate $\int_0^{\frac{\pi}{2}}\frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} dx$