Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
Hello. I am confused about how to solve the following Lagrange multiplier problem. It involves in inequality in the constraint so I began by finding the extrema within that domain by simply setting the first derivatives of f to 0, and finding that there is an extremum at (0, 0). However, the absolute values in the constraint confuse me when I try to use Lagrange multipliers. Can someone help me?
Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
2.1K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1257 views
- $9.00
Related Questions
- A rectangular garden plot is to be fenced off along the property line.
- taking business calc and prin of finance class should i buy calculator in body
-
Limit graphs
- Inverse function evaluation
- Explain partial derivatives v2
- Evaluate $\int \sqrt{\tan x} dx$
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- Find the equation of the tangent line through the function f(x)=3x$e^{5x-5} $ at the point on the curve where x=1