Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
Hello. I am confused about how to solve the following Lagrange multiplier problem. It involves in inequality in the constraint so I began by finding the extrema within that domain by simply setting the first derivatives of f to 0, and finding that there is an extremum at (0, 0). However, the absolute values in the constraint confuse me when I try to use Lagrange multipliers. Can someone help me?
Find the absolute extrema of $f(x,y) = x^2 - xy + y^2$ on $|x| + |y| \leq 1$.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
2.1K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 692 views
- $9.00
Related Questions
- Show that $\sum_{n=1}^{\infty} \frac{\sin n}{n}$ is convergent
- Measure Theory and the Hahn Decomposition Theorem
- Does an inequality of infinite sums imply another?
-
Limit graphs
- Two persons with the same number of acquaintance in a party
- Compound Interest question
- Uniform convergence of functions
- Calculate the following, if it exists: $\int_{0}^{1} x^a(lnx)^mdx$ , where $a > -1$ and $m$ is a nonnegative integer.