Does an inequality of infinite sums imply another?

Suppose $A, B$ are (infinite) sets of Euclidean vectors with $\sum_{\substack{y \in A}}||y||^{-2} \leq \sum_{\substack{z \in B}}||z||^{-2}$  Can we conclude $\sum_{\substack{y \in A}}e^{-\tau||y||^2} \leq \sum_{\substack{z \in B}}e^{-\tau||z||^2}$, for all positive real numbers $\tau$?

Intuitively this seems true, but there may be something I'm not taking into account. I can raise the bounty if the question proves difficult.

Answer

Answers can only be viewed under the following conditions:
  1. The questioner was satisfied with and accepted the answer, or
  2. The answer was evaluated as being 100% correct by the judge.
View the answer
The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to a 50% commission on every question that your affiliated users ask or answer.