Does an inequality of infinite sums imply another?
Suppose $A, B$ are (infinite) sets of Euclidean vectors with $\sum_{\substack{y \in A}}||y||^{-2} \leq \sum_{\substack{z \in B}}||z||^{-2}$ Can we conclude $\sum_{\substack{y \in A}}e^{-\tau||y||^2} \leq \sum_{\substack{z \in B}}e^{-\tau||z||^2}$, for all positive real numbers $\tau$?
Intuitively this seems true, but there may be something I'm not taking into account. I can raise the bounty if the question proves difficult.

43
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1.6K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 313 views
- $20.00
Related Questions
- Quick question regarding Analytical Applications of Differentiation
- Compute $\lim_{n \rightarrow \infty} \ln \frac{n!}{n^n}$
- Calculus 3 Challeng problems
- Calculus on Submanifolds Challenge
- Easy money (basic calc)
- (Calculus 1) Basic Calc: Derivatives, optimization, linear approximation...
- Prove that $\int _0^{\infty} \frac{1}{1+x^{2n}}dx=\frac{\pi}{2n}\csc (\frac{\pi}{2n})$
- The cross sectional area of a rod has a radius that varies along its length according to the formula r = 2x. Find the total volume of the rod between x = 0 and x = 10 inches.