Does an inequality of infinite sums imply another?
Suppose $A, B$ are (infinite) sets of Euclidean vectors with $\sum_{\substack{y \in A}}||y||^{-2} \leq \sum_{\substack{z \in B}}||z||^{-2}$ Can we conclude $\sum_{\substack{y \in A}}e^{-\tau||y||^2} \leq \sum_{\substack{z \in B}}e^{-\tau||z||^2}$, for all positive real numbers $\tau$?
Intuitively this seems true, but there may be something I'm not taking into account. I can raise the bounty if the question proves difficult.
Fredrick
43
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Martin
1.5K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 179 views
- $20.00
Related Questions
- Find amplitude-frequency characteristic of a discrete finite signal using Z-transform
- Calculate the superficial area
- Recursive square root sequence
- Application Of Integrals
- Evaluate the limit Please explain all steps
- Help with Business calculus. Finding derivative for X of given function.
- Calculus Integral Questins
- Compute $\lim\limits_{x \rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos(\frac{x}{1-x^2})}{x^4}$