Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(2n)+2f(2m)=f(f(n+m))$, $\forall m,n\in \mathbb{Z}$
Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that $f(2n)+2f(2m)=f(f(n+m))$, $\forall m,n\in \mathbb{Z}$.
Answer
The answer is accepted.
- answered
- 186 views
- $15.00
Related Questions
- Evaluate the line intergral $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, and verify the Green's theorem
- Calculus - Differentiation
- Uniform convergence of functions
- Epsilon-delta definitoon of continuity for $f : x → x^3$
- Please solve the attached problem from my worksheet
- Is the infinite series $\sum_{n=1}^{\infty}\frac{1}{n \ln n}$ convergent or divergent?
- Complex Variables
- Find the real solution of the equation $x^{2}-10=x \sin{x}$.