A Problem on Affine Algebraic Groups and Hopf Algebra Structures
Problem: (Definition) An affine algebraic group $G$ is an affine algebraic variety (in $\mathbb {A}^n_k$, for a given $n\in \mathbb {N}$) with group structure, such that the multiplication and the inversion, from $G$ to $G$, are algebraic variety morphisms.
i) Show that the symplectic group $Sp(2,k)$, given by $x\in Gl(2,k)$ such that $x^t\cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot x=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, is an affine algebraic group.
ii) Show that the ring of regular functions (or coordinate ring) $A:=k[G]$, seen here as a $k$-algebra and with $G$ being an affine algebraic group, satisfies the following: there exists $\mu: A\otimes A\rightarrow A, i:A\rightarrow A$ and $e$: such that the attached diagrams are commutative. In other words, show that $k[G]$ is a Hopf algebra with identity.
i) Show that the symplectic group $Sp(2,k)$, given by $x\in Gl(2,k)$ such that $x^t\cdot \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot x=\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, is an affine algebraic group.
ii) Show that the ring of regular functions (or coordinate ring) $A:=k[G]$, seen here as a $k$-algebra and with $G$ being an affine algebraic group, satisfies the following: there exists $\mu: A\otimes A\rightarrow A, i:A\rightarrow A$ and $e$: such that the attached diagrams are commutative. In other words, show that $k[G]$ is a Hopf algebra with identity.
93
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
133
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1036 views
- $30.00
Related Questions
- Prove that: |x| + |y| ≤ |x + y| + |x − y|.
- How do you go about solving this question?
- Can enough pizza dough be made to cover the surface of the earth?
- Find $x$, if $\sqrt{x} + 2y^2 = 15$ and $\sqrt{4x} − 4y^2 = 6$.
- Sinusodial graph help (electrical)
- Find $a,b,c$ so that $\begin{bmatrix} 0 & 1& 0 \\ 0 & 0 & 1\\ a & b & c \end{bmatrix} $ has the characteristic polynomial $-\lambda^3+4\lambda^2+5\lambda+6=0$
- Let $R$ be an integral domain and $M$ a finitely generated $R$-module. Show that $rank(M/Tor(M))$=$rank(M)$
- Geometric Representation Problem