Solve $abc=2(a-2)(b-2)(c-2)$ where $a,b $ and $c$ are integers
I am trying to find the integers $a,b$ and $c$ so that the number of hidden cubes in a rectangular cube with dimensions $a,b,c$ (built from $1\times 1$ cubes) to be half of the total number of cubes. The number of hidden cubes are $$(a-2)(b-2)(c-2)$$
So we must have $$(a-2)(b-2)(c-2)=\frac{abc}{2} \Rightarrow \ \ 2(a−2)(b−2)(c−2)= abc $$
But I don't know how to solve this equation for $a,b$ and $c$.
16
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1658 views
- $5.00
Related Questions
- Would the Equation $s⋅G=P1+e⋅P2$ Reveal Hidden Points $P1$ and $P2$ on an Elliptic Curve?
- Algebra 1 Word Problem #3
- Tensor Product II
- Let $R$ be an integral domain and $M$ a finitely generated $R$-module. Show that $rank(M/Tor(M))$=$rank(M)$
- Prove the following limits of a sequence of sets?
- Need to figure distance between two points/lines.
- College Algebra 1
- Find the coordinates of the point $(1,1,1)$ in Spherical coordinates