Characterizing the Tangent and Normal Bundles - Submanifolds in Banach Spaces and Their Classifications
- Let $M\subset\mathbb{R}^n$ of class $C^k$ and dimension $m$. Show that the set $TM=\{(p,v)\in\mathbb{R}^n\times\mathbb{R}^n;p\in M, v\in T_pM\}$ is a submanifold of class $C^{k-1}$ and dimension $2m$ , it is called the Tangent bundle of $M$.
- With the notation above, let $vM=\{(p,v)\in\mathbb{R}^n\times\mathbb{R}^n;p\in M, v\in T_pM^\perp\}$. Show that $vM$ is a submanifold of class $C^{k-1}$ and dimension $n$, it is called the Normal bundle of $M$ in $\mathbb{R}^n$.
This is a question in advanced calculus class in the context of Submanifolds in Banach spaces.
41
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- accepted
- 458 views
- $60.00
Related Questions
- Vector-Valued Equations
- Prove that ${n\choose 2}2^{n-2}=\sum\limits_{k=2}^{n}{n\choose k}{k\choose 2}$ for all $n\geq 2$
- Prove that $\lim_{n\rightarrow \infty} \int_{[0,1]^n}\frac{|x|}{\sqrt{n}}=\frac{1}{\sqrt{3}}$
- Exercise 4.33 from Spivak's Calculus on Manifolds.
- Double Integrals
- Calculus Questions - Domains; Limits; Derivatives; Integrals
- Evaluate$\int \sqrt{\tan x}dx$
- Use the equation to show the maximum, minimum, and minimum in the future.