Characterizing the Tangent and Normal Bundles - Submanifolds in Banach Spaces and Their Classifications
- Let $M\subset\mathbb{R}^n$ of class $C^k$ and dimension $m$. Show that the set $TM=\{(p,v)\in\mathbb{R}^n\times\mathbb{R}^n;p\in M, v\in T_pM\}$ is a submanifold of class $C^{k-1}$ and dimension $2m$ , it is called the Tangent bundle of $M$.
- With the notation above, let $vM=\{(p,v)\in\mathbb{R}^n\times\mathbb{R}^n;p\in M, v\in T_pM^\perp\}$. Show that $vM$ is a submanifold of class $C^{k-1}$ and dimension $n$, it is called the Normal bundle of $M$ in $\mathbb{R}^n$.
This is a question in advanced calculus class in the context of Submanifolds in Banach spaces.
41
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- accepted
- 1046 views
- $60.00
Related Questions
- Velocity of a rock
- Show that $\psi:L(E,L(E,F))\rightarrow L^2(E,F)$ given by $[\psi(T)](u,v)=[T(u)](v)$ is a linear homeomorphism
- Volume of the solid of revolution
- Compute $\lim\limits_{x \rightarrow 0} \frac{1-\frac{1}{2}x^2-\cos(\frac{x}{1-x^2})}{x^4}$
- Show that the line integral $ \oint_C y z d x + x z d y + x y d z$ is zero along any closed contour C .
- Epsilon delta 2
- Profit maximizing with cost and price functions
- Evluate $\int_{|z|=3}\frac{1}{z^5(z^2+z+1)}\ dz$