Characterizing the Tangent and Normal Bundles - Submanifolds in Banach Spaces and Their Classifications
- Let $M\subset\mathbb{R}^n$ of class $C^k$ and dimension $m$. Show that the set $TM=\{(p,v)\in\mathbb{R}^n\times\mathbb{R}^n;p\in M, v\in T_pM\}$ is a submanifold of class $C^{k-1}$ and dimension $2m$ , it is called the Tangent bundle of $M$.
- With the notation above, let $vM=\{(p,v)\in\mathbb{R}^n\times\mathbb{R}^n;p\in M, v\in T_pM^\perp\}$. Show that $vM$ is a submanifold of class $C^{k-1}$ and dimension $n$, it is called the Normal bundle of $M$ in $\mathbb{R}^n$.
This is a question in advanced calculus class in the context of Submanifolds in Banach spaces.
41
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- accepted
- 488 views
- $60.00
Related Questions
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Finding only one real root for a function
- Work problem involving pumping water from tank
- Does $\lim_{n \rightarrow \infty} \frac{2^{n^2}}{n!}$ exist?
- Show that $\psi:L(E,L(E,F))\rightarrow L^2(E,F)$ given by $[\psi(T)](u,v)=[T(u)](v)$ is a linear homeomorphism
- You have a piece of 8-inch-wide metal which you are going to make into a gutter by bending up 3 inches on each side
- Maximum gradient of function within a domain
- Evaluate $\int \sin x \sqrt{1+\cos x} dx$