Convergence and Holomorphicity of Series in Reinhardt Domains within Complex Analysis
Let $D \in \mathbb{C^n}$ be a Reinhardt domain and $f \in \mathcal{O}(D)$. For every $\alpha \in \mathbb{Z}^n$ define \[f_\alpha : D \to \mathbb{C}, z \mapsto \left(\frac{1}{2\pi i}\right)^{n}\int\limits_{\mathbb{T}^n}\frac{f(\zeta \cdot z)}{\zeta^{\alpha +1}}d\zeta (1.9) \] where $\zeta \cdot z = (\zeta_1z_1, ..., \zeta_nz_n).$ Then $f_\alpha \in \mathcal{O}(D)$ and the series $\sum\limits_{\alpha \in \mathbb{Z}^n}f_{\alpha}(z)$ converges compactly on $D$ towards $f$.
Prove the following.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- accepted
- 1175 views
- $40.00
Related Questions
- Complex Numbers Assignment 2
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- A bijective map between a horizontal strip and the unit disc.
- Evluate $\int_{|z|=3}\frac{1}{z^5(z^2+z+1)}\ dz$
- Complex Variables Assignment 3
- Complex Numbers
- Compute $$\oint_{|z-2|=2} \frac{\cos e^z}{z^2-4}dz$$
- Given the complex polynomial equation $z^{n} -1=0$ for n=2, 3, 4, what are the corresponding roots?