Convergence and Holomorphicity of Series in Reinhardt Domains within Complex Analysis
Let $D \in \mathbb{C^n}$ be a Reinhardt domain and $f \in \mathcal{O}(D)$. For every $\alpha \in \mathbb{Z}^n$ define \[f_\alpha : D \to \mathbb{C}, z \mapsto \left(\frac{1}{2\pi i}\right)^{n}\int\limits_{\mathbb{T}^n}\frac{f(\zeta \cdot z)}{\zeta^{\alpha +1}}d\zeta (1.9) \] where $\zeta \cdot z = (\zeta_1z_1, ..., \zeta_nz_n).$ Then $f_\alpha \in \mathcal{O}(D)$ and the series $\sum\limits_{\alpha \in \mathbb{Z}^n}f_{\alpha}(z)$ converges compactly on $D$ towards $f$.
Prove the following.

The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- accepted
- 1105 views
- $40.00
Related Questions
- Prove that $\int_{-\infty}^{\infty}\frac{\cos ax}{x^4+1}dx=\frac{\pi}{2}e^{-\frac{a}{\sqrt{2}}}(\cos \frac{a}{\sqrt{2}}+\sin \frac{a}{\sqrt{2}} )$
- Evaluate $\frac{1}{2 \pi i}\int_{|x|=1} \frac{z^{11}}{12z^{12}-4z^9+2z^6-4z^3+1}dz$
- Some final thoughts and closing out this question
- Gauss-Legendre quadrature rule
- Integration and Accumulation of Change
- Show that $\Delta \log (|f(z)|)=0$, where $f(z)$ is an analytic function.
- Write (1+i)^10 in the standard form a+bi
- A complex Analysis problem