Interior of union of two sets with empty interior
Let $X$ and $Y$ be subsets of $\mathbb{R}^n$. If $\text{int}(X)$ and $\text{int}(Y)$ are empty sets and $X$ is closed, then $\text{int}(X \cup Y)$ is an empty set.
Mona Vinci
39
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Erdos
4.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 201 views
- $12.00
Related Questions
- real analysis
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- Prove that a closed subset of a compact set is compact.
- separability and completeness
- [Real Analysis] Show that $B$ is countable.
- Find the cardinality of the set of all norms on R^n (hint: show that every norm || || : R n → R is continuous).
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$