A problem on almost singular measures in real analysis
Suppose that $\mu$ and $\nu$ are finite measures on a measurable space $(X,\mathcal{M})$. Prove that either $\nu \perp \mu$ or there exists $\epsilon > 0$ and a measurable set $E \subseteq X$ such that $\mu(E) > 0$ and $\nu \ge \epsilon \mu$ on $E$ (that is, every measurable set $S \subseteq E$ has $\nu(S) \ge \epsilon \mu(S)$).
Daniel
53
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Melissa G
46
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 722 views
- $7.00
Related Questions
- Integral of product measure
- real analysis
- do not answer
- Interior of union of two sets with empty interior
- Prove that $\frac{d \lambda}{d \mu} = \frac{d \lambda}{d \nu} \frac{d \nu}{d \mu}$ for $\sigma$-finite measures $\mu,\nu, \lambda$.
- real analysis
- A Real Analysis question on convergence of functions
- Prove the uniqueness of a sequence using a norm inequality.