A problem on almost singular measures in real analysis
Suppose that $\mu$ and $\nu$ are finite measures on a measurable space $(X,\mathcal{M})$. Prove that either $\nu \perp \mu$ or there exists $\epsilon > 0$ and a measurable set $E \subseteq X$ such that $\mu(E) > 0$ and $\nu \ge \epsilon \mu$ on $E$ (that is, every measurable set $S \subseteq E$ has $\nu(S) \ge \epsilon \mu(S)$).
53
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
46
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1598 views
- $7.00
Related Questions
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- Existence of a Divergent Subsequence to Infinity in Unbounded Sequences
- True-False real analysis questions
- Characterizing S-Measurable Functions on $\mathbb{R}$ with Respect to a Simple $\sigma$-Algebra
- Accumulation points question (Real Analysis)
- real analysis
- Prove that convergence of the infinite series of integral of absolue values of a sequence of functions implies convergence
- Advanced Modeling Scenario