Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
Let a be a set accumulation point $A$ subset of $\mathbb{R}$. Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
Could I have an answer in detail (especially the build of that sequences), please?
Answer
Answers can be viewed only if
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
-
Could you rewrite the proof, just in the first case, and build xn1, xn2 and xn3 explicitly, please? (Specially, I didn't get how does 1/n(k+1)<|xn(k+1)-a| works )
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
- answered
- 172 views
- $5.00
Related Questions
- Prove that every compact Hausdorff space is normal
- Limit of an Integral of a $C^\infty$-Smooth Function with Compact Support
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- [Real Analysis] Show that $B$ is countable.
- Pathwise connected
- Prove the uniqueness of a sequence using a norm inequality.
- Uniform convergence of functions