Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
Let a be a set accumulation point $A$ subset of $\mathbb{R}$. Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
Could I have an answer in detail (especially the build of that sequences), please?
Homeomorfo Fle
121
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
Mathe
3.5K
-
Could you rewrite the proof, just in the first case, and build xn1, xn2 and xn3 explicitly, please? (Specially, I didn't get how does 1/n(k+1)<|xn(k+1)-a| works )
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 653 views
- $5.00
Related Questions
- Let $f\in C (\mathbb{R})$ and $f_n=\frac{1}{n}\sum\limits_{k=0}^{n-1} f(x+\frac{k}{n})$. Prove that $f_n$ converges uniformly on every finite interval.
- Measure Theory and the Hahn Decomposition Theorem
- Prove the uniqueness of a sequence using a norm inequality.
- Limit of an Integral of a $C^\infty$-Smooth Function with Compact Support
- real analysis
- real analysis
- Prove that $A - B=A\cap B^c$
- How do we take the mean of a mathematical function using statistics?