Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
Let a be a set accumulation point $A$ subset of $\mathbb{R}$. Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
Could I have an answer in detail (especially the build of that sequences), please?

121
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
3.6K
-
Could you rewrite the proof, just in the first case, and build xn1, xn2 and xn3 explicitly, please? (Specially, I didn't get how does 1/n(k+1)<|xn(k+1)-a| works )
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 759 views
- $5.00
Related Questions
- What is the Lebesgue density of $A$ and $B$ which answers a previous question?
- What is the asymptotic density of $A$ and $B$ which partition the reals into subsets of positive measure?
- Calculating P values from data.
- [Real Analysis] Let $a>1$ and $K>0$. Show that there exists $n_0∈N$ such that $a^{n_0}>K$.
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- Accumulation points question (Real Analysis)
- real analysis
- Prove the uniqueness of a sequence using a norm inequality.