Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
Let a be a set accumulation point $A$ subset of $\mathbb{R}$. Show that there is either an increasing sequence or a decreasing sequence of points $x_n$ in A with $lim_{n\rightarrow \infty} x_n=a$.
Could I have an answer in detail (especially the build of that sequences), please?
Answer
Answers can be viewed only if
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
2.9K
-
Could you rewrite the proof, just in the first case, and build xn1, xn2 and xn3 explicitly, please? (Specially, I didn't get how does 1/n(k+1)<|xn(k+1)-a| works )
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to 50% commission on every question your affiliated users ask or answer.
- answered
- 320 views
- $5.00
Related Questions
- Assume there is no $x ∈ R$ such that $f(x) = f'(x) = 0$. Show that $$S =\{x: 0≤x≤1,f(x)=0\}$$ is finite.
- Need Upper Bound of an Integral
- For each A ∈ { Z, Q, } find the cardinality of the set of all increasing bijective functions f : A → A.
- $\textbf{I would like a proof in detail of the following question.}$
- real analysis
- Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- Prove the uniqueness of a sequence using a norm inequality.