Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
Answer
Let $\epsilon>0$, and choose $N_0$ large enough so that for all $n,m\geq N_0$
\[||x_n-x_m||< \epsilon, ||y_n-y_m||<\epsilon/2.\]
By the reverse triangle inequality we have
\[|\lambda_n-\lambda_m|=| ||x_n-y_n|| - ||x_m-y_m||| \leq ||x_n-y_n - (x_m-y_m)|| \]
\[=||x_n-x_m - (y_n-y_m)|| \leq ||x_n-x_m||+ || y_n-y_m|| \]
\[<\epsilon/2+\epsilon/2=\epsilon.\]
Hence for all $n,m \geq N_0$ we have
\[|\lambda_n-\lambda_m| < \epsilon,\]
i.e. the sequene $\{\lambda_n\}$ is Cauchy, and thus it is a convergent series.

4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1322 views
- $15.00
Related Questions
- [Real Analysis] Show that the set $A$ is uncountable. Use this result to show that ${\displaystyle\mathbb {R}}$ is uncountable.
- Define$ F : C[0, 1] → C[0, 1] by F(f) = f^2$. For each $p, q ∈ \{1, 2, ∞\}$, determine whether $F : (C[0, 1], d_p) → (C[0, 1], d_q)$ is continuous
- Measure Theory and the Hahn Decomposition Theorem
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$
- Pathwise connected
- Prove the uniqueness of a sequence using a norm inequality.
- Prove that $\int_0^1 \left| \frac{f''(x)}{f(x)} \right| dx \geq 4$, under the given conditions on $f(x)$
- Interior of union of two sets with empty interior