Prove the Function
Answer
Answers can be viewed only if
- The questioner was satisfied and accepted the answer, or
- The answer was disputed, but the judge evaluated it as 100% correct.
The answer is accepted.
- answered
- 128 views
- $5.00
Related Questions
- Does the sequence $f_n=\arctan (\frac{2x}{x^2+n^3})$ converge uniformly on $\mathbb{R}$?
- H is a Hilber space
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
- Prove that $p_B :\prod_{\alpha \in A} X_\alpha \to \prod_{\alpha \in B} X_\alpha$ is a continuous map
- Prove that every compact Hausdorff space is normal
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$