Two exercises in complex analysis
I am stuck on the attched two problems. I have no idea how to approach them.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Erdos
4.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 586 views
- $8.00
Related Questions
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
- Convergence and Holomorphicity of Series in Reinhardt Domains within Complex Analysis
- Derivative Hadamard Product
- Complex Integral
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- Sigma-Algebra Generated by Unitary Subsets and Its Measurable Functions
- Gauss-Legendre quadrature rule
- Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.