Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.
1. Prove that $f$ is class $C^{∞} $ and calculate the Jacobian Matrix in $(0,1,1)$.
2. Considering $R^3 = R^2×R$, calculate the partial derivatives $D_{i}f(0, 1, 1)$ with $(i = 1, 2)$.
3. Using the Theorem of the Implicit Function, decide if we can see the level set $f(0, 1, 1)$ as the graph of some convenient function.
The more detailed the better, having a tough time understanding the professor's answer.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
4.8K
-
Thank you very much. Would you be able to take a look at my other question? Most recent one in the site.
-
I am busy at the moment. I will answer it before the deadline if no one else accepts to answer it.
-
Great! Much appreciated.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1638 views
- $20.00
Related Questions
- Integration
- You have 100 feet of cardboard. You need to make a box with a square bottom, 4 sides, but no top.
- Extremal values/asymptotes
- Find $n$ such that $\lim _{x \rightarrow \infty} \frac{1}{x} \ln (\frac{e^{x}+e^{2x}+\dots e^{nx}}{n})=9$
- Question about interest earned
- Are my answers correct
- Evaluate $I(a) = \int_{0}^{\infty}\frac{e^{-ax^2}-e^{-x^2}}{x}dx $
- Exercise 4.33 from Spivak's Calculus on Manifolds.