Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.
1. Prove that $f$ is class $C^{∞} $ and calculate the Jacobian Matrix in $(0,1,1)$.
2. Considering $R^3 = R^2×R$, calculate the partial derivatives $D_{i}f(0, 1, 1)$ with $(i = 1, 2)$.
3. Using the Theorem of the Implicit Function, decide if we can see the level set $f(0, 1, 1)$ as the graph of some convenient function.
The more detailed the better, having a tough time understanding the professor's answer.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
4.8K
-
Thank you very much. Would you be able to take a look at my other question? Most recent one in the site.
-
I am busy at the moment. I will answer it before the deadline if no one else accepts to answer it.
-
Great! Much appreciated.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1668 views
- $20.00
Related Questions
- Evaluate the integral $\int_{-\infty}^{+\infty}e^{-x^2}dx$
- Derivative of FUNCTION
- Calculus - Derivatives (help with finding a geocache)
- Integrate $\int e^{\sqrt{x}}dx$
- Prove the trig identity $\sec x- \sin x \tan x =\frac{1}{\sec x}$
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$
- Need help with this calculus question please
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.