Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.
1. Prove that $f$ is class $C^{∞} $ and calculate the Jacobian Matrix in $(0,1,1)$.
2. Considering $R^3 = R^2×R$, calculate the partial derivatives $D_{i}f(0, 1, 1)$ with $(i = 1, 2)$.
3. Using the Theorem of the Implicit Function, decide if we can see the level set $f(0, 1, 1)$ as the graph of some convenient function.
The more detailed the better, having a tough time understanding the professor's answer.
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

4.8K
-
Thank you very much. Would you be able to take a look at my other question? Most recent one in the site.
-
I am busy at the moment. I will answer it before the deadline if no one else accepts to answer it.
-
Great! Much appreciated.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1532 views
- $20.00
Related Questions
- Find $\lim _{x \rightarrow 0^{+}} \sqrt{x}\ln x$
- Get the volume and surface area of the paraboloid $z=4-x^2-y^2$ cut by the plane $z=4-2x$
- Help with differentating business caluclus problem.
- Calculate the following, if it exists: $\int_{0}^{1} x^a(lnx)^mdx$ , where $a > -1$ and $m$ is a nonnegative integer.
- Volume of the solid of revolution
- Find the derivative of the function $f(x)=\sqrt{\sin^2x+e^x+1}$
- Let $f(x,y,z)=(x^2\cos (yz), \sin (x^2y)-x, e^{y \sin z})$. Compute the derivative matrix $Df$.
- Question 1 calculus