Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
Answer
\textbf{Solution:} By definition \[ \|T\|=\sup_{v \in V, v \neq 0} \frac{\|Tv\|}{\|v\|}\geq \frac{\|Tv\|}{\|v\|} \text{ for all } v \in V, v \neq 0. \] Thus, \[ \|Tv\| \leq \|T\|\|v\|, \ \ \forall v\in V. \] Note that the above inequality trivially holds for $v=0$ since $T(0)=0.$ Therefore \[ \alpha \leq \|T\|, \] where $\alpha = \inf \{M \in \R : \|Tv\|\leq M\|v\| , \forall v \in V \}$.\\ Next we show that $\alpha \geq \|T\|$. Let $\epsilon >0$. Then there exists $M<\alpha+\epsilon$ such that \[ \|Tv\|\leq M\|v\| \rightarrow \frac{\|Tv\|}{\|v\|}\leq M < \alpha+\epsilon, \forall v \in V, v\neq 0. \] Thus \[ \|T\|=\sup_{v \in V, v \neq 0} \frac{\|Tv\|}{\|v\|}\leq M <\alpha+\epsilon, \] and hence \[ \|T\|<\alpha+\epsilon. \] Letting $\epsilon \rightarrow 0$ we get $\|T\| \leq \alpha$, and hence $\alpha= \|T\|$. $\Box$
- answered
- 2560 views
- $10.00
Related Questions
- A lower bound on infinite sum of exponential functions (corrected version)
- A problem on almost singular measures in real analysis
- How do we take the mean of a mathematical function using statistics?
- Calculating P values from data.
- Limit of an Integral of a $C^\infty$-Smooth Function with Compact Support
- Banach fixed-point theorem and the map $Tf(x)=\int_0^x f(s)ds $ on $C[0,1]$
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- What is the Lebesgue density of $A$ and $B$ which answers a previous question?