Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
Answer
\textbf{Solution:} By definition \[ \|T\|=\sup_{v \in V, v \neq 0} \frac{\|Tv\|}{\|v\|}\geq \frac{\|Tv\|}{\|v\|} \text{ for all } v \in V, v \neq 0. \] Thus, \[ \|Tv\| \leq \|T\|\|v\|, \ \ \forall v\in V. \] Note that the above inequality trivially holds for $v=0$ since $T(0)=0.$ Therefore \[ \alpha \leq \|T\|, \] where $\alpha = \inf \{M \in \R : \|Tv\|\leq M\|v\| , \forall v \in V \}$.\\ Next we show that $\alpha \geq \|T\|$. Let $\epsilon >0$. Then there exists $M<\alpha+\epsilon$ such that \[ \|Tv\|\leq M\|v\| \rightarrow \frac{\|Tv\|}{\|v\|}\leq M < \alpha+\epsilon, \forall v \in V, v\neq 0. \] Thus \[ \|T\|=\sup_{v \in V, v \neq 0} \frac{\|Tv\|}{\|v\|}\leq M <\alpha+\epsilon, \] and hence \[ \|T\|<\alpha+\epsilon. \] Letting $\epsilon \rightarrow 0$ we get $\|T\| \leq \alpha$, and hence $\alpha= \|T\|$. $\Box$

- answered
- 1707 views
- $10.00
Related Questions
- Prove that convergence of the infinite series of integral of absolue values of a sequence of functions implies convergence
- Mathematical modeling
- Prove that every compact Hausdorff space is normal
- Define $F : \mathbb{R}^ω → \mathbb{R}^ω$ by $F(x)_n = \sum^n_{k=1} x_k$. Determine whether $F$ restricts to give a well-defined map $F : (\ell_p, d_p) → (\ell_q, d_q)$
- Need Upper Bound of an Integral
- Two exercises in complex analysis
- Find $\lim\limits _{n\rightarrow \infty} n^2 \prod\limits_{k=1}^{n} (\frac{1}{k^2}+\frac{1}{n^2})^{\frac{1}{n}}$
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$