Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
Answer
\textbf{Solution:} By definition \[ \|T\|=\sup_{v \in V, v \neq 0} \frac{\|Tv\|}{\|v\|}\geq \frac{\|Tv\|}{\|v\|} \text{ for all } v \in V, v \neq 0. \] Thus, \[ \|Tv\| \leq \|T\|\|v\|, \ \ \forall v\in V. \] Note that the above inequality trivially holds for $v=0$ since $T(0)=0.$ Therefore \[ \alpha \leq \|T\|, \] where $\alpha = \inf \{M \in \R : \|Tv\|\leq M\|v\| , \forall v \in V \}$.\\ Next we show that $\alpha \geq \|T\|$. Let $\epsilon >0$. Then there exists $M<\alpha+\epsilon$ such that \[ \|Tv\|\leq M\|v\| \rightarrow \frac{\|Tv\|}{\|v\|}\leq M < \alpha+\epsilon, \forall v \in V, v\neq 0. \] Thus \[ \|T\|=\sup_{v \in V, v \neq 0} \frac{\|Tv\|}{\|v\|}\leq M <\alpha+\epsilon, \] and hence \[ \|T\|<\alpha+\epsilon. \] Letting $\epsilon \rightarrow 0$ we get $\|T\| \leq \alpha$, and hence $\alpha= \|T\|$. $\Box$

- answered
- 2458 views
- $10.00
Related Questions
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- Rouche’s Theorem applied to the complex valued function $f(z) = z^6 + \cos z$
- Prove that $S \subseteq X$ is nowhere dense iff $X-\overline{S}$ is dense.
- real analysis
- Reflexive Banach Space and Duality
- Calculating P values from data.
- Probability Question
- Finding a unique structure of the domain of a function that gives a unique intuitive average?