Reflexive Banach Space and Duality
Let $X$ be a Banach space.
1) Show that if $X$ is reflexive, then $X^*$ is reflexive.
Hint: Consider the adjoint operator of the natural embedding $J_X: X \rightarrow X^{**}$.
2) Conversely, show that if $X^*$ is reflexive, then $X$ is reflexive.
Hint: Remark that the natural embedding provides an isomorphism between $X$ and a closed subspace of $X^{**}$.
3) Let $E \subseteq \mathbb{R}^n$ be a measurable set such that $B(0, r) \subseteq E$ for some $r \gt 0$. Use the results from questions 2 and 3 (attached below) to show that $(L^{\infty}(E), \|\cdot\|_{\infty})$ is not reflexive.![]()
41
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1060 views
- $30.00
Related Questions
- Prove Holder-continuity for $\mu_\lambda (x) = \sum\limits_{n=1}^\infty \frac{ \cos(2^n x)}{2^{n \lambda} }$
- Let $f:U\subset\mathbb{R} ^3\rightarrow \mathbb{R} ^2$ given by $f(x,y,z)=(sin(x+z)+log(yz^2) ; e^{x+z} +yz)$ where $U = { (x, y, z) ∈ R^3| y, z > 0 }.$ Questions Inside.
- Let $(X, ||\cdot||)$ be a normed space. Let $\{x_n\}$ and $\{y_n\}$ be two Cauchy sequences in X. Show that the seqience Show that the sequence $λ_n = ||x_n − y_n|| $ converges.
- Uniform convergence of functions
- A function satifying $|f(x)-f(y)|\leq |x-y|^2$ must be constanct.
- Prove that every compact Hausdorff space is normal
- [ Banach Fixt Point Theorem ] $\frac{dy} {dx} = xy, \text{with} \ \ y(0) = 3,$
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$