Prove that $f$ is a diffeomorphism $C^∞$, that maps... (More inside)
Prove that $f:(x, y) ∈ R^2$ - {(0, 0)} → ($\frac{x}{x^2 +y^2} $ ; $\frac{y}{x^2+y^2} $) ∈ $R^2$ - {(0, 0)} is a diffeomorphism $C^∞$, that maps each circle of radius $r > 0$ centered in the origin to a cocentric circle with radius $\frac{1}{r} $ .
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment

4.8K
-
Hey, just one question, I don't really understand how that last part proves the last argument (that f maps each circle of radius r > 0 centered in the origin to a concentric circle with radius 1/r). Would you be able to clarify that?
-
Note that if |(x,y)| =s, then |f(x,y)|=|(u,v)|=1/s. When s varies between (0,r), 1/s covers (1/r, infinity). I hope this helps.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 891 views
- $10.00
Related Questions
- Optimization Quick Problem
- Evaluate the line intergral $\int_C (2x^3-y^3)dx+(x^3+y^3)dy$, and verify the Green's theorem
- Integrate $\int_0^1\int_{\sqrt{x}}^{1}e^{y^3}dydx$
- Multivariable Calculus Questions
- Does $\lim_{(x,y)\rightarrow (0,0)}\frac{(x^2-y^2) \cos (x+y)}{x^2+y^2}$ exists?
- Suppose that $T \in L(V,W)$. Prove that if Img$(T)$ is dense in $W$ then $T^*$ is one-to-one.
- Finding the arc length of a path between two points
- Convex subset