Pathwise connected

Give an example: Let $A$ and $B$ be pathwise-connected subsets of $\mathbb{R}^2$, whose intersection $A∩B$ is nonempty. The union $A∪B$ is pathwise connected. 

*Use the fact that a convex subset is pathwise connected for one of the subsets. 

$A=\{(x,y)\in \mathbb{R}^2 | \hspace{1mm} |x|+|y| \leq 10\}$
$B=\{(x,y)\in \mathbb{R}^2 | \hspace{1mm} x^2+y^2=25\}$
and let $C=A \cup B$. Define the function $f:C\rightarrow \mathbb{R}$ by

Something similar to this example. But I need different subsets and function from this.

  • Mathe Mathe

    Are you sure you wrote the question correctly?

  • Which part is wrong?

  • Mathe Mathe

    Well, you could take A = B = R^2. All sets are convex and path-connected, A intersection B = R^2 is non empty and A union B = R^2 which is again convex and path-connected. One could also find easy examples with A different to B.

  • I have edited the question to make it clearer.

  • Mathe Mathe

    Please fix: " Let A and B of be pathwise-connected of \mathbb{R}^2". That statement is not correct.

  • Sorry for the mistake.

  • The bounty is low.

  • Erdos Erdos

    You just need an example or you also need a proof that it satisfied the conditions?

  • A simple proof to show that each two subsets are pathwise connected or just hint would be fine.

  • I mean each subsets

  • Mathe Mathe

    I'm confused now. Do you need to prove that, "If A and B are path connected with non-empty intersection, THEN their union is also path connected"? Or do you need an example of this behavior? If it's just the example, I can answer that very quickly.

  • Just the example with explanation.


Answers can be viewed only if
  1. The questioner was satisfied and accepted the answer, or
  2. The answer was disputed, but the judge evaluated it as 100% correct.
View the answer

1 Attachment

Mathe Mathe
  • Sorry can I request for a more complicated subsets? Just like the example I have given. I wish to have something like x^2+y^2=25 (e.g. a shape)

  • Mathe Mathe

    You can take A= {(x,y)| y>=x^2}, this is everything above the parabola y = x^2 and it is path connected. Take B = {(x,y)| y<=1-x^2}, this is everything below the parabola y = 1- x^2 . The intersection is not empty and their union is path connected.

  • Or can you help me to verify if I can define the two subsets as: A=[-3,3]x[-4,4] which is a generalised triangle and B={(x,y) | x^2+y^2=4}.

  • May I have some steps to show that y>=x^2 by using the definition of pathwise connected?

  • I also need a function with AUB as its domain, as shown in the example :)

  • Mathe Mathe

    The function sin(x+y) is defined on AUB.

  • Mathe Mathe

    The definition of path connected means that every pair of points in the set can be joined by a path. In this case, a line between two points will join them.

  • Can I have a function that is more complicated?

  • Mathe Mathe


  • Thank you!

  • Is each of these subsets is pathwise-connected? A=[-3,3]x[-4,4] which is a generalised triangle and B={(x,y) | x^2+y^2=4}

  • Mathe Mathe

    A=[-3,3]x[-4,4] is just a square, but yeah, they are path-connected.

  • Thank you for your help!

The answer is accepted.
Join Matchmaticians Affiliate Marketing Program to earn up to 50% commission on every question your affiliated users ask or answer.