[ Banach Fixt Point Theorem ] $\frac{dy} {dx} = xy, \text{with} \ \ y(0) = 3,$
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Erdos
4.8K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 733 views
- $10.00
Related Questions
- ODEs - Stability
- Differential equations, question 3
- Uniform convergence of functions
- Prove that if $T \in L(V,W)$ then $ \|T\| = \inf \{M \in \R : \, \|Tv\| \le M\|v\| \textrm{ for all } v \in V \}.$
- Derive the solution $u(x,t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{3/2}}e^{\frac{-x^2}{4(t-s)}}g(s) \, ds$ for the heat equation
- Partial differential equations help
- Differentai equations, question 2.
- Solve $Lx = b$ for $x$ when $b = (1, 1, 2)^T$.