Solve the Riemann Problem
Consider the Riemann Problem (RP) for the traffic flow model
$u_t + (u − u^2)_x = 0$
$U_L = 5/6$ and $U_R = 1/2$
i) Solve the RP. It will have a rarefaction wave.
ii) In the model,
$(u − u^2)/u = 1 − u$
(flux divided by density) is the scaled average speed of an individual car. Find the formula for the position $x(t)$ of a car that starts at $x(0) = −1$ in the traffic described by the RP above. Hint: it will be a three part solution, with two easy parts.

153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.6K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 739 views
- $13.00
Related Questions
- Lyapuniv-functions
- Differential Equations- Initial Value Problem
- Find the General Solution
- Diffrential Equations
- Partial differential equations help
- Prove that $\lim_{\epsilon \rightarrow 0} \int_{\partial B(x,\epsilon)} \frac{\partial \Phi}{\partial \nu}(y)f(x-y)dy=f(x)$
- General solutions of the system $X'=\begin{pmatrix} a & b \\ c & d \end{pmatrix} $
- Aysomptotical stability