Aysomptotical stability
Prove that the system of ODEs
$y_1'=-y_1^3 + y_2^5$
$y_2'=-y_1y_2^4-y_2^3$
is asymptotically stable in $(0,0)$.
116
Answer
Consider the canonical energy function $V(y_1, y_2) = \tfrac{1}{2}(y_1^2 + y_2^2)$. It is clear that this is a positive definite function. Furthermore, it is a strict Lyapunov function;
$$V' = y_1 (-y_1^3 + y_2^5) + y_2 (-y_1 y_2^4 - y_2^3) = - (y_1^4 + y_2^4),$$
which is less than $0$ everywhere except at the origin. Thus by the Lyapunov stability theorem, the system is stable at the origin.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 2889 views
- $6.00
Related Questions
- How to determine the stability of an ODE
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- 2nd Order ODE IVP non homogeneous
- Lyapuniv-functions
- Power series solution of Differential Equations
- Show this initial value problem has a unique solution for initial value forall t
- Differentai equations, question 2.
- Solve the two-way wave equation