Aysomptotical stability
Prove that the system of ODEs
$y_1'=-y_1^3 + y_2^5$
$y_2'=-y_1y_2^4-y_2^3$
is asymptotically stable in $(0,0)$.
116
Answer
Consider the canonical energy function $V(y_1, y_2) = \tfrac{1}{2}(y_1^2 + y_2^2)$. It is clear that this is a positive definite function. Furthermore, it is a strict Lyapunov function;
$$V' = y_1 (-y_1^3 + y_2^5) + y_2 (-y_1 y_2^4 - y_2^3) = - (y_1^4 + y_2^4),$$
which is less than $0$ everywhere except at the origin. Thus by the Lyapunov stability theorem, the system is stable at the origin.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1980 views
- $6.00
Related Questions
- 3 Multi-step response questions
- How does the traffic flow model arrive at the scaled equation?
- Beginner Differential Equations - Growth Rate Question
- Differential equations
- Finding all real solutions of a linear ODE.
- Differentiate $y=((e^x)-(e^{-x}))/((e^x)+(e^{-x}))$ and prove that $dy/dx=1-y^2$
- ODEs: Lipschitz-continuity and an IVP
- Burgers’ equation $u_t + u u_x = −x $