Aysomptotical stability
Prove that the system of ODEs
$y_1'=-y_1^3 + y_2^5$
$y_2'=-y_1y_2^4-y_2^3$
is asymptotically stable in $(0,0)$.
116
Answer
Consider the canonical energy function $V(y_1, y_2) = \tfrac{1}{2}(y_1^2 + y_2^2)$. It is clear that this is a positive definite function. Furthermore, it is a strict Lyapunov function;
$$V' = y_1 (-y_1^3 + y_2^5) + y_2 (-y_1 y_2^4 - y_2^3) = - (y_1^4 + y_2^4),$$
which is less than $0$ everywhere except at the origin. Thus by the Lyapunov stability theorem, the system is stable at the origin.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 3037 views
- $6.00
Related Questions
- Parametric, Polar, and Vector-Valued Equations for Kav10
- What is the transfer function of this system of differential equations?
- Diffrential Equations
- System of linear differential equations
- Diffrential Equations
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- Show that the following subset Ω of Euclidean space is open
- Variation of Parameter for Variable Coefficient Equation