Aysomptotical stability
Prove that the system of ODEs
$y_1'=-y_1^3 + y_2^5$
$y_2'=-y_1y_2^4-y_2^3$
is asymptotically stable in $(0,0)$.
116
Answer
Consider the canonical energy function $V(y_1, y_2) = \tfrac{1}{2}(y_1^2 + y_2^2)$. It is clear that this is a positive definite function. Furthermore, it is a strict Lyapunov function;
$$V' = y_1 (-y_1^3 + y_2^5) + y_2 (-y_1 y_2^4 - y_2^3) = - (y_1^4 + y_2^4),$$
which is less than $0$ everywhere except at the origin. Thus by the Lyapunov stability theorem, the system is stable at the origin.
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 3364 views
- $6.00
Related Questions
- Solve the integral equation, (integro-differential)
- Finding all real solutions of a linear ODE.
- 10 questions Differential Equations
- Laplace transforms and initial value problems.
- Leaky Buckets: Volume in a system of 2+ buckets that can be empty
- ODE pls help solve
- Please solve this question
- 3 Multi-step response questions