Find a formula for the vector hyperbolic problem
Consider the vector hyperbolic problem
$u_t + Au_x = −u$
$A=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} $
with $u = (u, v)^T$ (transpose to indicate u is a column vector in the equation above).
Find a formula using characteristics for the problem with given initial data $u(x, 0) = u_0(x)$.
Reformulate the vector problem as a second-order scalar problem for $u(x, t)$.
Chdogordon
153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
Martin
1.5K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1021 views
- $12.00
Related Questions
- Differential equations (Laplace transform
- Derive the solution $u(x,t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{3/2}}e^{\frac{-x^2}{4(t-s)}}g(s) \, ds$ for the heat equation
- ODEs - Stability
- Solve the two-way wave equation
- Fixed points of analytic complex functions on unit disk $\mathbb{D}$
- Leaky Buckets: Volume in a system of 2+ buckets that can be empty
- Differential Equations
- Solve the integral equation, (integro-differential)