Find a formula for the vector hyperbolic problem
Consider the vector hyperbolic problem
$u_t + Au_x = −u$
$A=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} $
with $u = (u, v)^T$ (transpose to indicate u is a column vector in the equation above).
Find a formula using characteristics for the problem with given initial data $u(x, 0) = u_0(x)$.
Reformulate the vector problem as a second-order scalar problem for $u(x, t)$.
153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1819 views
- $12.00
Related Questions
- Finding all real solutions of a linear ODE.
- Diffrential Equations
- Prove that $\lim_{\epsilon \rightarrow 0} \int_{\partial B(x,\epsilon)} \frac{\partial \Phi}{\partial \nu}(y)f(x-y)dy=f(x)$
- Laplace transforms and initial value problems.
- Equations of Motion and Partial Fractions
- Show that the following subset Ω of Euclidean space is open
- Show this initial value problem has a unique solution for initial value forall t
- [ Banach Fixt Point Theorem ] $\frac{dy} {dx} = xy, \text{with} \ \ y(0) = 3,$