Solve the two-way wave equation
Consider the two-way wave equation
$u_{tt} − u_{xx} = 0$
for $t ≥ 0$ and $x ≥ 0$ with initial data $u(x, 0) = u_0(x)$ and $u_t(x, 0) = 0$ for $x ≥ 0$ and boundary data $u_x(0, t) = 0$ for $t > 0$
Draw a diagram of the problem in the $x − t$ plane.
Solve the problem in terms of $u_0$. Describe the interaction of the left-moving wave with the $x = 0$ boundary (one sentence).
153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1174 views
- $10.00
Related Questions
- Suppose $u \in C^2(\R^n)$ is a harmonic function. Prove that $v=|\nabla u|^2$ is subharmonic, i.e. $-\Delta v \leq 0$
- How should I approach this question?
- How does the traffic flow model arrive at the scaled equation?
- Conservative system ODE
- Equipartition of energy in the wave equation
- The domain of a solution and stability of solutions of a differential equation.
- Pointwise estimate for solutions of the laplace equation on bounded domains
- Can someone translate $s_j : \Omega \hspace{3pt} x \hspace{3pt} [0,T_{Final}] \rightarrow S_j \subset R$ into simple English for me?