Solve the two-way wave equation
Consider the two-way wave equation
$u_{tt} − u_{xx} = 0$
for $t ≥ 0$ and $x ≥ 0$ with initial data $u(x, 0) = u_0(x)$ and $u_t(x, 0) = 0$ for $x ≥ 0$ and boundary data $u_x(0, t) = 0$ for $t > 0$
Draw a diagram of the problem in the $x − t$ plane.
Solve the problem in terms of $u_0$. Describe the interaction of the left-moving wave with the $x = 0$ boundary (one sentence).
153
Answer
Answers can only be viewed under the following conditions:
- The questioner was satisfied with and accepted the answer, or
- The answer was evaluated as being 100% correct by the judge.
1 Attachment
1.7K
The answer is accepted.
Join Matchmaticians Affiliate Marketing
Program to earn up to a 50% commission on every question that your affiliated users ask or answer.
- answered
- 1136 views
- $10.00
Related Questions
- Solving a system of linear ODE with complex eigenvalues
- Partial Diff Eq problems
- Equipartition of energy in one dimensional wave equation $u_{tt}-u_{xx}=0 $
- Ordinary Differential Equations Word Problems
- Derive the solution $u(x,t)=\frac{x}{\sqrt{4 \pi}} \int_{0}^{t} \frac{1}{(t-s)^{3/2}}e^{\frac{-x^2}{4(t-s)}}g(s) \, ds$ for the heat equation
- Equations of Motion and Partial Fractions
- Mean value formula for the laplace equation on a disk
- Diffrential Equations